
Cyclomatic complexity 1

Cyclomatic complexity
Introduction
Cyclomatic complexity CC is a software metric that measures the complexity of a program.
It counts the number of independent paths through the code, determined by the number of
control structures such as if-else , for , switch .

How to calculate
Cyclomatic Complexity measures the number of linearly independent paths in a program.
Each independent path represents a decision point in the code.

Key Points:

Itʼs calculated based on the control flow graph of the program.

CC gives an idea of how complex and interconnected your code is.

Formula
Formula:

Where:

E number of edges in the control graph.

N number of nodes in the control graph.

P number of components (usually 1 for a single function). (number of ways to exit or
end the program),

Example 1

CC = E −N + 2P

Cyclomatic complexity 2

def example(a, b):

 if a > b:

 print("a is greater")

 else:

 print("b is greater or equal")

 return a + b

Program control graph for the program has 5 edges and 5 nodes.

Hence:

In this example:

Control structures: if-else 1 decision point).

CC2 One path for if , another for else .
Example 2

def example(a, b):

 if a > b:

 print("a > b")

 elif a == b:

 print("a == b")

 else:

 print("a < b")

 for i in range(a):

CC = 5 − 5 + 2 ∗ 1 = 2

Program control graph

Cyclomatic complexity 3

 print(i)

 return b

In this example:

if-elif-else 2 branches. for loop: Adds one additional path.

CC4 3 decision branches 1 loop.

Impact of high cyclomatic complexity
Difficulties
High cyclomatic complexity may lead to following difficulties:

� Difficult testing: higher CC means more tests are required to cover all paths.

� Increased bug probability: complex code is more bug-prone.

� Reduces readability: code with high CC becomes less intuitive.

Thresholds
Thresholds are relative to each program individually.

General thresholds:

CC 10 acceptable, manageable complexity.

CC 10 consider refactoring.

CC 20 high complexity — urgent refactoring.

Techniques to minimize cyclomatic complexity
1. Brake down functions (refactoring):
Brake down functions: Large, monolithic functions tend to have higher CC. Splitting them
into small, focused functions reduces complexity and improves readability.

Example:

Complex function with CC = 5

def calculate_total(items, discount, tax):

 if discount > 0:

 items = apply_discount(items, discount)

 total = 0

 for item in items:

 if item.price > 100:

 tax_rate = 0.1

 else:

 tax_rate = 0.05

 total += item.price + (item.price * tax_rate)

Cyclomatic complexity 4

 return total

Refactored:

def calculate_total(items, discount, tax):

 items = apply_discount(items, discount) if discount > 0 \

 else items

 return sum(apply_tax(item) for item in items)

def apply_tax(item):

 tax_rate = 0.1 if item.price > 100 else 0.05

 return item.price + (item.price * tax_rate)

New CC 2 for calculate_total 1 for apply_tax 3.
2. Use Guard Clauses:
Use guard clauses: Guard clauses help eliminate deeply nested conditions by returning
early.

Before:

def process_order(order):

 if order.is_valid():

 if order.is_paid:

 ship_order(order)

 else:

 print("Order not paid")

 else:

 print("Invalid order")

After:

def process_order(order):

 if not order.is_valid():

 print("Invalid order")

 return

 if not order.is_paid:

 print("Order not paid")

 return

Cyclomatic complexity 5

 ship_order(order)

Result: Reduced nesting and CC.
3. Replace conditions with Polymorphism:
Replace conditions with Polymorphism: Excessive if-else or switch statements can be
replaced with polymorphism or design patterns like Strategy.

Example:

High CC due to multiple conditions

def process_payment(payment_type, amount):

 if payment_type == "credit_card":

 process_credit_card(amount)

 elif payment_type == "paypal":

 process_paypal(amount)

 elif payment_type == "bank_transfer":

 process_bank_transfer(amount)

 else:

 raise ValueError("Unsupported payment type")

Refactored with Polymorphism:

class PaymentProcessor:

 def process(self, amount):

 raise NotImplementedError()

class CreditCardPayment(PaymentProcessor):

 def process(self, amount):

 process_credit_card(amount)

class PayPalPayment(PaymentProcessor):

 def process(self, amount):

 process_paypal(amount)

class BankTransferPayment(PaymentProcessor):

 def process(self, amount):

 process_bank_transfer(amount)

Usage

Cyclomatic complexity 6

payment = PayPalPayment()

payment.process(amount)

Effect: CC reduced to the base class.
4. Use ternary operators:
Use ternary operators: For simple conditions, use concise expressions instead of full if-
else blocks.

Example:

Before

if a > b:

 max_value = a

else:

 max_value = b

After

max_value = a if a > b else b

5. Adopt functional programming principles:
Adopt functional programming principles: Functional programming encourages
immutability and pure functions, which tend to have low CC.

Example: Use map, filter, or reduce instead of loops and conditions.

