
Django. 1

Django.
Models

Django models form the foundation of how data is structured and stored in a Django application.
They map Python object to relational database tables, allowing to interact with databases using
Python code rather than writing SQL directly.

Introduction
A Django model is a Python class that maps to a database table. Each attribute of the model
class represents a column in a database. Django handles communication between Python
code and the database, allowing to perform CRUD operations.

Basic example of a Django model

from django.db import models

class Post(models.Model):

 title = models.CharField(max_length=255)

 content = models.TextField()

 author = models.CharField(max_length=100)

 published_date = models.DateTimeField(auto_now_add=True)

 def __str__(self):

 return self.title

Model Inheritance:
Every model class in Django must inherit from
models.Model .

Fields:

CharField : A string field for small-to-medium-sized strings.

TextField : A field for large text data.

Django. 2

DateTimeField : Stores date and time.

Other fields include IntegerField , BooleanField , ForeignKey , and many more.

Constraints:

max_length : Specifies the maximum length for fields like CharField .

auto_now_add : Automatically sets the field to the current date/time when the object
is first created.

The __str__ method:
This is a string representation of the object (used in the Django admin interface and
elsewhere).

Behind the scene
Once you’ve defined your models, Django generates SQL to create necessary database
tables.

CREATE TABLE blog_post (

 id INT PRIMARY KEY AUTOINCREMENT,

 title VARCHAR(255),

 content TEXT,

 author VARCHAR(100),

 published_date DATETIME

);

Migrations
Introduction
Migrations in Django are a system that manages changes to the database schema over
time. They allow to:

Version control the database schema

Safely apply changes to the database as Django models evolve.

Migrations are closely tied to the models defiled in the models.py files. Whenever a model
is modified (e.g., add a field, rename a field, or change fields type), Django create a
migration to apply these changes to the database.

F.A.Q
What problem migrations solve ?

Schema evolution: As your application grows, you need to modify your database
schema to accommodate new Features. Migrations handle it in a controlled way.

Version control: You can track changes to your database schema and apply
appropriate migrations on different environments (e.g., development, testing,
production) in a consistent manner.

Key migration commands ?

python3 manage.py makemigrations create new migration files based on changes in the
models.py .

http://modes.py/
http://manage.py/

Django. 3

python3 manage.py migrate applies migrations to the database, syncing models to the
database schema.

How do migrations work step-by-step ?

Model Changes: You modify or add fields to your models in the models.py file.

Generate Migrations: Run makemigrations . Django detects changes and creates
migration files in the migrations/ folder of each app.

Migration Files: Each migration file is a Python script describing the changes.
Django generates raw SQL statements behind the scenes based on these files.

Apply Migrations: Run migrate to apply the changes to your database.

Migration History: Django tracks migrations applied to the database in a special
table called django_migrations , ensuring migrations are applied only once.

What happens if you delete migrations files (not recommended !) ?

Database Schema: The database changes already applied via migrations will remain
intact (nothing breaks in the database).

Future Migrations: Without the migration history (the deleted files), Django may not
be able to track future changes correctly. Deleting migration files might cause issues
when attempting to apply new migrations.

If you want to delete migrations and reset them, you need to carefully manage this by
deleting the django_migrations table entries and recreating the migration files in sync
with the current schema. This can be tricky and is generally discouraged unless
absolutely necessary.

What happens if you modify the Database directly (Without migrations) ?

Database Changes: If you modify the database manually (e.g., using SQL in
PostgreSQL), Django will be unaware of those changes.

Desync Between Models and Database: The models and the database schema will
fall out of sync. For example, if you rename a column in the database but don’t reflect
the change in models.py , Django will still expect the old column name, leading to
errors.

Migrations Won’t Reflect Changes: Future migrations won’t account for manual
changes in the database, and you might face issues when running migrate .

It is always recommended to make changes via migrations (or through Django’s ORM)
rather than directly in the database to avoid these problems.

Common Django Field Types
CharField : Fixed-length strings (e.g., name, email)

TextField : Larger text (e.g., blog posts, comments)

IntegerField : Stores integers

BooleanField : True/False values

DateTimeField : Date and time

EmailField : Validates email format

http://manage.py/

Django. 4

ForeignKey : For many-to-one relationships (e.g., one author, many posts)

ManyToManyField : For many-to-many relationships (e.g., a post can have many tags)

Model Managers
Django Model Manages are essential part of Django’s ORM and are responsible for providing
the database query interface for Django models. Every Django model has a default manager
called objects , which provides methods like all(), filter(), get() , and other to interact with
the database.

Definition
A model manager is a class that manages database queries related to a model. Model
manages are customization, own manager can be created to extend or modify query
behavior.

Custom managers are helpful when:

You have complex or repetitive queries.

You want to abstract business logic (like filtering published posts) in a reusable way.

You need to add specialized query methods that your views or other parts of the
application will use frequently.

Creating a custom manager
To create a new custom manager, you define a new class that inherits from models.Manager .
This allows you to add your own methods that extend or customize the default behavior.

Let’s create a simple model manager.

from django.db import models

class PublishedPostManager(models.Manager):

 def get_queryset(self):

 return super().get_queryset().filter(is_published=True)

class Post(models.Model):

 title = models.CharField(max_length=255)

 content = models.TextField()

 author = models.CharField(max_length=100)

 is_published = models.BooleanField(default=False)

 published_date = models.DateTimeField(null=True, blank=True)

 # Link the custom manager

 published = PublishedPostManager()

 def __str__(self):

 return self.title

Custom Manager (PublishedPostManager):
This custom manager overrides the
get_queryset() method to return only posts where is_published=True .

Django. 5

Custom Manager Assignment:
Instead of using
Post.objects , you would use Post.published to only retrieve published posts.

Using a custom manager
After linking the custom manager class to the model, we can access it as a model’s
attribute which inherits methods for working with the manager.

Using the default manager (will return all posts)

all_posts = Post.objects.all()

Using the custom manager (will return only published posts)

published_posts = Post.published.all()

Multiple mangers on a model
You can have multiple managers on the same model. For example, you might want a
default manager that returns all posts, and a custom manager that returns only published
posts.

class Post(models.Model):

 title = models.CharField(max_length=255)

 content = models.TextField()

 author = models.CharField(max_length=100)

 is_published = models.BooleanField(default=False)

 published_date = models.DateTimeField(null=True, blank=True)

 # Default manager (Post.objects)

 objects = models.Manager()

 # Custom manager for published posts

 published = PublishedPostManager()

 def __str__(self):

 return self.title

Here, Post.objects will return all posts (published and unpublished), while Post.published
will return only published posts.

Adding custom query methods in a manager
Custom managers can also include additional methods that return filtered query sets or
perform actions. For example, lets add a method that returns all posts written by a
particular author:

class PostManager(models.Manager):

 def by_author(self, author_name):

 return self.get_queryset().filter(author=author_name)

class Post(models.Model):

 title = models.CharField(max_length=255)

 content = models.TextField()

 author = models.CharField(max_length=100)

Django. 6

 is_published = models.BooleanField(default=False)

 published_date = models.DateTimeField(null=True, blank=True)

 # Custom manager

 objects = PostManager()

 def __str__(self):

 return self.title

Now, you can query posts my author using the custom method:

Get all posts by the author "John Doe"

johns_posts = Post.objects.by_author("John Doe")

Using Model Managers in the Admin
You can also use custom managers in Django’s Admin interface. For example, you need
admin interface to display only published posts.

class PostAdmin(admin.ModelAdmin):

 def get_queryset(self, request):

 qs = super().get_queryset(request)

 return qs.filter(is_published=True)

admin.site.register(Post, PostAdmin)

The QuerySet class
Django Mangers return a QuerySet object, and the get_queryset() method is a key part of that. A
QuerySet is a collections of database queries that Django will execute. By customizing the
get_queryset() method in a manager, you control what data the manger returns.

If you need more complex logic, you can create custom QuerySets.

Custom QuerySet

class PostQuerySet(models.QuerySet):

 def published(self):

 return self.filter(is_published=True)

class PostManager(models.Manager):

 def get_queryset(self):

 return PostQuerySet(self.model, using=self._db)

class Post(models.Model):

 title = models.CharField(max_length=255)

 content = models.TextField()

 author = models.CharField(max_length=100)

 is_published = models.BooleanField(default=False)

 objects = PostManager()

Django. 7

 def __str__(self):

 return self.title

Allows to chain queries in a flexible manner

published_posts = Post.objects.published()

Query optimization

Key Techniques for Optimizing Django Queries:
1. Lazy Querysets

2. Using select_related and prefetch_related

3. Avoiding the N+1 Problem

4. Using Query Aggregation

5. Database Indexing

6. Limiting the Fields Retrieved

7. Bulk Operations

8. Defer and Only for Large Models

Lazy Querying
In Django, querysets are lazy. This means that no database query is actually executed
until the queryset is evaluated. This feature prevents unnecessary queries and allows you
to chain queryset methods without hitting the database repeatedly.

No database hit yet

posts = Post.objects.all()

Database query executed when queryset is evaluated (e.g., in a loop)

for post in posts:

 print(post.title)

This laziness can be useful, but it's important to be mindful of when queries are evaluated
(e.g., in templates or when passing a queryset to a function).

Using select_related and prefetch_related .
One of the most common performance problem in Django is the N+1 problem. This occurs
when your code queries related modes in a loop, resulting in multiple database hits
instead of fetching all the related data in a single query.

select_related is used for foreign key and one-to-one relationships. It performs an SQL join
and includes the related object in the same query, reducing the number of db hits.

class Post(models.Model):

 title = models.CharField(max_length=255)

 content = models.TextField()

Django. 8

 author = models.ForeignKey(Author, on_delete=models.CASCADE)

Without select_related (N+1 problem):

posts = Post.objects.all()

for post in posts:

 print(post.author.name) # This will execute one query per post (N

With select_related (solves N+1 problem):

posts = Post.objects.select_related('author')

for post in posts:

 print(post.author.name) # This will execute only one query

prefetch_related is used for M:M, and reversed foreign key relationships. It performs
separated queries for the related objects and does the joining in Python rather than in the
database.

class Post(models.Model):

 title = models.CharField(max_length=255)

 tags = models.ManyToManyField('Tag')

Without prefetch_related:

posts = Post.objects.all()

for post in posts:

 print(post.tags.all()) # Multiple queries for each post (N+1 prob

With prefetch_related:

posts = Post.objects.prefetch_related('tags')

for post in posts:

 print(post.tags.all()) # Executes just two queries (one for posts

Avoiding N+1 problem
The N+1 problem happens when the code ends up make one query to fetch the main
object (1 query) and additional queries for each related object (N queries). This typically
occurs in a loop over related objects without using select_related and prefetch_realted .

Using Query Aggregation
Django provides powerful aggregation functions to compute values like count, sum,
average, etc.

from django.db.models import Count, Avg

Get the total number of posts

total_posts = Post.objects.count()

Get the average number of posts per author

average_posts_per_author = Post.objects.values('author').annotate(tota

Total number of posts for each author

posts_per_author = Post.objects.values('author__name').annotate(post_c

By using aggregation, you're leveraging the database to compute totals or averages,
which is more efficient than fetching all the data into Python and performing the
computation manually.

Django. 9

Database indexing
Indexes are crucial database optimization technique that makes lookups and joins falter.
Django allows to specify which fields should be indexed at the model level.

To add an index to a field, use the index=True option in the model’s field definition:

class Post(models.Model):

 title = models.CharField(max_length=255, db_index=True) # Adds an

 content = models.TextField()

Compound, and unique indexes are supported as well by using the Meta class.

class Post(models.Model):

 title = models.CharField(max_length=255)

 content = models.TextField()

 class Meta:

 indexes = [

 models.Index(fields=['title', 'author']),

]

Adding the right indexes can significantly improve query performance, but keep in mind
that indexes slow down inserts and updates. Only index fields that are frequently queried.

Limiting the fields retrieved.
Sometimes all database fields are not needed, especially if a table has a lot of columns or
large data. You can optimize performance by limiting the fields retrieved from the
database using the only() and defer() methods.

only() This methods retrieves only the fields specified, reducing the amount of data
fetched.

Fetch only the 'title' and 'published_date' fields

posts = Post.objects.only('title', 'published_date')

defer() This method retrieves all fields except the one specified. It’s useful when you want
most of the data but want to avoid fetching large fields file TextField .

Fetch all fields except 'content'

posts = Post.objects.defer('content')

These methods can reduce memory usage and query execution time by retrieving only
the necessary data.

Bulk operations
When inserting or updating multiple records, Django’s default behavior is to issue one
query per record. This can lead to inefficiency in large databases. You can use bulk
operation like bulk_create() or bulk_update() to insert or update multiple records within a
single query.
bulk_create()

Django. 10

Insert multiple posts at once

Post.objects.bulk_create([

 Post(title='Post 1', content='Content 1', author=author),

 Post(title='Post 2', content='Content 2', author=author),

])

bulk_update()

Update multiple posts at once

posts = Post.objects.filter(author=author)

for post in posts:

 post.content = 'Updated content'

Post.objects.bulk_update(posts, ['content'])

These operations are much more efficient than looping over each object and calling
save() .

Example of optimizing
Imagine you have a blog with many posts, each of which has an author and tags. You
want to display the titles, authors, and tags of the most recent 10 posts.

Optimized query

posts = (

 Post.objects.select_related('author') # Avoids N+1 for the 'auth

 .prefetch_related('tags') # Prefetches tags to avoid

 .only('title', 'author__name') # Fetches only the necessa

 .order_by('-published_date') # Orders by the most recen

 .all()[:10] # Limits the result to 10

)

This query optimizes:

Foreign key retrieval with select_related() .

Many-to-many retrieval with prefetch_related() .

Only fetching necessary fields with only() .

Limiting the number of posts with [:10] .

Reversed foreign key
Understanding the foreign key. A foreign key is used to define a one-to-many relationship
between two models. The model that holds the foreign key field is called a “child” or “
related” model, and the other is the “parent” or “referenced” model. A foreign key allows a
“child” models to access the “parent” model fields.

The reversed foreign key allows the “referenced” model to access the “related” model’s
fields.

Example to illustrate reversed foreign key
Let’s consider a simple example where we have two models: Author and Post . Each post
belongs to a single author (one-to-many relationship), but an author can have many posts.

Django. 11

from django.db import models

class Author(models.Model):

 name = models.CharField(max_length=100)

 def __str__(self):

 return self.name

class Post(models.Model):

 title = models.CharField(max_length=255)

 content = models.TextField()

 author = models.ForeignKey(Author, on_delete=models.CASCADE)

 def __str__(self):

 return self.title

Each Post has a foreign key field (author), which links it to an Author .

Each Author can have multiple Post objects, but a Post can only have one Author .
Forward Foreign Key Access
From the Post model, you can easily access the related Author using the foreign key
relationship.

post = Post.objects.get(id=1)

print(post.author.name) # Access the author of the post

Reverse Foreign Key access
The reverse foreign key is how the Author model accesses all related Post objects. This
works because Django automatically creates a reverse relation for each foreign key.

By default, Django creates this reverse relation as related_name if you don’t explicitly set it.
In our case, the default reverse relation for Post objects on the Author model would be
author.post_set (model name in lowercase with _set suffix).

author = Author.objects.get(id=1)

posts = author.post_set.all() # Get all posts written by this author

for post in posts:

 print(post.title)

author.post_set.all() retrieves all Post objects where the author field matches this
specific Author .

This is the reverse access from Author to Post .

Using related_name to customize the Reversed Foreign Key
By default, Django uses the pattern <model_name>_set to refer to the reverse foreign key.
However, you can customize this by using the related_name attribute when defining the
ForeignKey .

Django. 12

class Post(models.Model):

 title = models.CharField(max_length=255)

 content = models.TextField()

 author = models.ForeignKey(Author, on_delete=models.CASCADE, relat

 def __str__(self):

 return self.title

In this case, you’ve set the related_name to 'posts' . Now, instead of using author.post_set ,
you can access the related posts like this:

author = Author.objects.get(id=1)

posts = author.posts.all() # Access all posts related to this author

for post in posts:

 print(post.title)

In templates
In Django you can access objects by Reversed Foreign Key even from the templates.

<h1>{{ author.name }}</h1>

 {% for post in author.posts.all %}

 {{ post.title }}

 {% endfor %}

Querying
You can also perform queries using reverse foreign keys. For example, you might want to
get all authors who have written more than 5 posts:

from django.db.models import Count

authors = Author.objects.annotate(post_count=Count('posts')).filter(po

Here, Count('posts') counts the number of posts related to each author, and then the
queryset filters to only authors with more than 5 posts.

Views
Generic views (CBVs)
Built in Class bases views. Their description and use cases. Generic views follow the DRY
(Don't Repeat Yourself) principle by encapsulating common patterns, allowing developers to
avoid writing repetitive code.

1. ListView
Description: Renders a list of objects from a given model or queryset.

Django. 13

Use Case: Use ListView when you need to display a list of items, such as a list of blog
posts, products, or users.

Example: Displaying a paginated list of articles in a blog application.

2. DetailView
Description: Renders a detail page for a single object, typically identified by a primary
key or slug.

Use Case: Use DetailView when you need to show detailed information about a single
object, like a single blog post or a user profile.

Example: Viewing the details of a specific product in an e-commerce site.

3. CreateView
Description: Provides a form for creating a new object and saves the object upon
successful submission.

Use Case: Use CreateView to simplify the process of adding new objects to the database.

Example: Creating a new post in a blogging application.

4. UpdateView
Description: Provides a form for editing an existing object and updates the object upon
successful submission.

Use Case: Use UpdateView to allow users to edit existing objects, like editing a user profile
or updating a product's details.

Example: Editing an existing comment on a blog post.

5. DeleteView
Description: Provides a confirmation page for deleting an object and deletes the object
upon confirmation.

Use Case: Use DeleteView when you need to provide functionality to delete objects from
the database.

Example: Deleting a user account or a specific blog post.

6. TemplateView
Description: Renders a template without requiring a model. It’s used for displaying static
content.

Use Case: Use TemplateView when you need to render a static HTML page that doesn’t
require interaction with a database model.

Example: Displaying an "About Us" page or a "Terms and Conditions" page.

7. RedirectView
Description: Redirects to a given URL or named URL pattern.

Use Case: Use RedirectView to perform URL redirects, such as redirecting after a form
submission or handling old URLs.

Django. 14

Example: Redirecting from an old URL to a new URL after a page has been moved.

8. FormView
Description: Renders a form and processes form submissions, without associating it
directly with a model.

Use Case: Use FormView when you need to handle forms not directly tied to a database
model, like contact forms or search forms.

Example: Implementing a contact form on a website.

9. ArchiveIndexView
Description: Displays a list of objects grouped by date (usually year or month).

Use Case: Use ArchiveIndexView for date-based archives, like blog archives grouped by
year.

Example: A blog page displaying all posts from the current year.

10. YearArchiveView
Description: Displays objects from a specific year.

Use Case: Use YearArchiveView to create archives grouped by year.

Example: Showing all blog posts from a particular year.

11. MonthArchiveView
Description: Displays objects from a specific month and year.

Use Case: Use MonthArchiveView to create monthly archives of objects.

Example: Showing all articles published in March 2024.

12. WeekArchiveView
Description: Displays objects from a specific week.

Use Case: Use WeekArchiveView to group objects by week, which is helpful for creating
weekly summaries or round-ups.

Example: Showing all posts from the first week of April 2024.

13. DayArchiveView
Description: Displays objects from a specific day.

Use Case: Use DayArchiveView for daily archives, like a day-by-day archive of blog posts.

Example: Displaying posts from April 1, 2024.

14. TodayArchiveView
Description: Displays objects from the current day.

Use Case: Use TodayArchiveView to show items created today, which is useful for daily
updates.

Example: Showing all articles published today.

Django. 15

15. DateDetailView
Description: Displays a single object based on a date and a slug.

Use Case: Use DateDetailView to display a specific object identified by a date.

Example: Displaying a blog post from a specific day.

Function based views
Templates

Forms
Handling data in a form

Clean data
cleaned_data is a dictionary-like attribute that contains the validated data from the form's
fields. After a form has been submitted and its data has been validated (using the
is_valid() method), the cleaned_data dictionary is populated with the cleaned (validated
and converted) data from the form.

Custom data cleaners

class ContactForm(forms.Form):

 name = forms.CharField(max_length=100)

 email = forms.EmailField()

 message = forms.CharField(widget=forms.Textarea)

 def clean_email(self):

 email = self.cleaned_data.get('email')

 if not email.endswith('@example.com'):

 raise forms.ValidationError('Email must be from example.co

 return email

class ContactForm(forms.Form):

 name = forms.CharField(max_length=100)

 email = forms.EmailField()

 message = forms.CharField(widget=forms.Textarea)

 def clean(self):

 cleaned_data = super().clean()

 name = cleaned_data.get('name')

 message = cleaned_data.get('message')

 if name and message:

 if 'urgent' in message and name != 'Admin':

 raise forms.ValidationError('Only Admin can send urgen

Django. 16

 return cleaned_data

is_valid
Field Validation:

When you call form.is_valid() , Django goes through each field in the form and runs
the validation logic for that field. This includes built-in validations like checking if a
required field is filled in, or if an email is correctly formatted, as well as any custom
validation logic you may have added.

If a field's data passes validation, it is added to the cleaned_data dictionary.

Data Cleaning and Conversion:

During validation, the data is also "cleaned" and converted into the appropriate
Python data types. For example, if a form field is a DateField , the data entered as a
string (e.g., "2024-09-04") is converted into a Python datetime.date object and
stored in cleaned_data .

Accessing cleaned_data :

Once the form is validated, you can access the cleaned_data dictionary to retrieve
the validated data and perform further processing, such as saving it to a database
or using it in some other way.

Errors

1. ValidationError
What It Is:

ValidationError is the most common error raised during form validation. It occurs
when the data provided by the user does not meet the validation criteria set by the
form fields or custom validation methods.

Examples:

Entering an invalid email address in an EmailField .

Providing a string where an integer is expected in an IntegerField .

2. TypeError
What It Is:

TypeError can occur if you attempt to perform an operation on a data type that isn’t
compatible with that operation, often resulting from incorrect data types being
passed to form fields.

Examples:

Passing a list instead of a string to a CharField .

Using an integer where a DateField expects a date object.

Common Scenarios:

When writing custom validation logic and accidentally performing operations on
the wrong data type.

Django. 17

3. ValueError
What It Is:

ValueError occurs when a function receives an argument of the right type but with
an inappropriate value, particularly in custom validation logic.

Examples:

Trying to convert a string that doesn’t represent a valid number to an integer.

Common Scenarios:

When manually processing form data in a view or within custom clean() methods.

4. KeyError
What It Is:

KeyError can occur when you try to access a key in a dictionary that doesn’t exist.
In form validation, this might happen if you attempt to access a field in cleaned_data
that hasn’t been validated yet or doesn’t exist in the form.

Examples:

Accessing a non-existent key in cleaned_data .

Common Scenarios:

In custom clean() methods where you access multiple fields together without
checking if they exist first.

5. AttributeError
What It Is:

AttributeError occurs when you try to access or call an attribute or method that
doesn’t exist on an object. In forms, this can happen if you assume a certain field
or method exists when it does not.

Examples:

Attempting to call a method that is not defined on a form field.

Common Scenarios:

When you have a typo in field names or when the form or model object is
incorrectly referenced.

6. IntegrityError
What It Is:

IntegrityError occurs when a form tries to save data that violates database
constraints, such as uniqueness or foreign key constraints.

Examples:

Trying to create a new user with a username that already exists if the username field
is marked as unique.

Common Scenarios:

Django. 18

When saving form data directly to the database, especially in ModelForm .

7. MultiValueDictKeyError
What It Is:

MultiValueDictKeyError is a subclass of KeyError and occurs when you try to access
a key in a Django request's POST or GET data (which are MultiValueDicts) that
doesn’t exist.

Examples:

Accessing a non-existent key in request.POST or request.GET .

Common Scenarios:

When processing form data directly from the request object without using
request.POST.get() or request.GET.get() methods that handle missing keys more
gracefully.

8. FieldError
What It Is:

FieldError occurs when there is a problem with a form field, such as when trying
to set a form field that doesn't exist or when a field is improperly configured.

Examples:

Trying to set a field that is not part of the form.

Common Scenarios:

When dynamically adding or modifying form fields.

9. ImproperlyConfigured
What It Is:

ImproperlyConfigured occurs when Django is not properly configured, which could
include issues in form setup or field configuration.

Examples:

Misconfiguring a form field that expects a certain setting to be present.

Common Scenarios:

When configuring forms or integrating them with other Django components.

Model Form
A ModelForm in Django is a class that automatically generates a form based on a Django
model. It simplifies the process of creating forms that interact with the database, allowing
developers to create forms for model data without manually defining the form fields.

Use Cases of ModelForm
1. CRUD Operations: When you need to create, update, or delete records in the database

through a form, a ModelForm can be used to automatically generate the form fields that
correspond to the model fields.

Django. 19

2. Form Validation: ModelForms include built-in validation based on the model’s field
constraints (e.g., max_length , unique , blank , etc.), reducing the amount of custom
validation code you need to write.

3. Consistency: Ensures consistency between the form and the model by reusing the
model's field definitions and validation logic.

4. Admin Interface: Django's admin interface uses ModelForms to create forms for models
automatically.

How to Use a ModelForm
1. Define a Model: First, you need to have a Django model that represents the data

structure:

from django.db import models

class Book(models.Model):

 title = models.CharField(max_length=200)

 author = models.CharField(max_length=100)

 published_date = models.DateField()

 isbn = models.CharField(max_length=13, unique=True)

 def __str__(self):

 return self.title

2. Create a ModelForm: You then create a ModelForm class that specifies the model it
corresponds to:

from django import forms

from .models import Book

class BookForm(forms.ModelForm):

 class Meta:

 model = Book

 fields = ['title', 'author', 'published_date', 'isbn']

model : Specifies which model the form is based on.

fields : Specifies which model fields should be included in the form. You can also
exclude fields using exclude = ['field_name'] .

3. Use the ModelForm in Views: Finally, you use this ModelForm in your views to handle
form submissions, validation, and saving the data to the database:

from django.shortcuts import render, redirect

from .forms import BookForm

def add_book(request):

 if request.method == 'POST':

 form = BookForm(request.POST)

Django. 20

 if form.is_valid():

 form.save() # Save the new book to the database

 return redirect('book_list') # Redirect to a list of boo

 else:

 form = BookForm()

 return render(request, 'add_book.html', {'form': form})

<!-- templates/add_book.html -->

<!DOCTYPE html>

<html>

<head>

 <title>Add Book</title>

</head>

<body>

 <h2>Add a New Book</h2>

 <form method="post">

 {% csrf_token %}

 {{ form.as_p }}

 <button type="submit">Save</button>

 </form>

</body>

</html>

Advanced Use Cases
Overriding Fields: You can override specific fields in the ModelForm to customize their
behavior.

Custom Validation: You can add custom validation methods for specific fields or the
entire form.

Partial Forms: You can use fields or exclude to create forms that only include a subset of
the model’s fields.

class BookForm(forms.ModelForm):

 title = forms.CharField(widget=forms.TextInput(attrs={'placeholde

 class Meta:

 model = Book

 fields = ['title', 'author', 'published_date', 'isbn']

Widgets
Widgets in Django Forms are the building blocks that represent HTML form elements such as
<input> , <select> , and <textarea> . They are responsible for rendering these form fields on the
frontend and handling the user input. Each form field in Django is associated with a widget
that determines how it will be displayed in the HTML and how the input data will be
processed.

Django. 21

Example using widgets

from django import forms

class UserRegistrationForm(forms.Form):

 username = forms.CharField(max_length=100, widget=forms.TextInput(

 password = forms.CharField(widget=forms.PasswordInput(attrs={'clas

 email = forms.EmailField(widget=forms.EmailInput(attrs={'class':

 birth_date = forms.DateField(widget=forms.SelectDateWidget(years=r

In this example:

widget=forms.TextInput(...) : Specifies a TextInput widget for the username field, with
additional HTML attributes like class and placeholder .

widget=forms.PasswordInput(...) : Uses a PasswordInput widget for the password field,
rendering it as a password input box.

widget=forms.EmailInput(...) : Customizes the EmailField with an EmailInput widget.

widget=forms.SelectDateWidget(...) : Provides a dropdown for selecting a date with a
custom range of years.

Built-it widgets
1. TextInput : widget=forms.TextInput(attrs={'class': 'form-control'})

2. PasswordInput : widget=forms.PasswordInput(attrs={'class': 'form-control'}) .

3. EmailInput : widget=forms.EmailInput(attrs={'placeholder': 'Enter your email'}) .

4. TextArea : widget=forms.Textarea(attrs={'rows': 4, 'cols': 15}) .

5. CheckboxInput : widget=forms.CheckboxInput() .

6. Select : widget=forms.Select(choices=[('1', 'One'), ('2', 'Two')]) .

7. RaidioSelect : widget=forms.RadioSelect(choices=[('M', 'Male'), ('F', 'Female')]) .

8. FileInput : widget=forms.FileInput() .

9. DateInput : widget=forms.DateInput(attrs={'type': 'date'})

10. SelectDatewidget : widget=forms.SelectDateWidget(years=range(1980, 2025)) .

11. TimeInput : widget=forms.TimeInput(attrs={'type': 'time'}) .

12. NumberInput : widget=forms.NumberInput() .

Customizing widgets
You can customize widgets by passing additional attributes using the attrs argument.
This allows you to add CSS classes, placeholder text, or any other HTML attributes to the
rendered widget.

class CommentForm(forms.Form):

 comment = forms.CharField(widget=forms.Textarea(attrs={

 'class': 'form-control',

 'rows': 5,

Django. 22

 'placeholder': 'Enter your comment here...'

 }))

Build custom widgets
If the built-in widgets don’t meet your requirements, you can create custom widgets by
subclassing django.forms.widgets.Widget and implementing the necessary methods.

from django.forms.widgets import Widget

class CustomTextInput(Widget):

 template_name = 'custom_widgets/custom_text_input.html'

 def __init__(self, attrs=None):

 super().__init__(attrs)

 def get_context(self, name, value, attrs):

 context = super().get_context(name, value, attrs)

 context['custom_attribute'] = 'custom_value'

 return context

Validation and custom validators

Validation levels:
Form
Form Validators: These are applied to the entire form. They are typically used when you
need to validate the relationship between multiple fields or the overall consistency of the
form data.

Form validators are typically used when the validation logic depends on more than one
field. You can override the clean method in your form to implement form-level validation.

from django import forms

from django.core.exceptions import ValidationError

class SignupForm(forms.Form):

 username = forms.CharField(max_length=100)

 email = forms.EmailField()

 confirm_email = forms.EmailField()

 def clean(self):

 cleaned_data = super().clean()

 email = cleaned_data.get("email")

 confirm_email = cleaned_data.get("confirm_email")

 if email != confirm_email:

 raise ValidationError("Emails do not match")

Django. 23

In this example, the form checks if the email and confirm_email fields match. If they don't, a
ValidationError is raised, which will prevent the form from being submitted and display an
error message to the user.
Using Validators in Model Forms
When using Model Forms, validators can be applied directly to the model fields in the
model definition, and they will automatically be applied to the corresponding form fields.

from django.db import models

from django.core.validators import MinLengthValidator

class User(models.Model):

 username = models.CharField(max_length=100, validators=[MinLengthV

 email = models.EmailField()

class UserForm(forms.ModelForm):

 class Meta:

 model = User

 fields = ['username', 'email']

In this case, the MinLengthValidator is applied to the username field at the model level, and it
will be enforced when the field is used in a form.

Field
Field Validators: These are applied to individual form fields. They are used to ensure that
a single field meets specific criteria, such as being a valid email address, having a
minimum length, or matching a regular expression pattern.

Django provides a set of built-in validators that you can attach to form fields. Additionally,
you can create custom validators if the built-in ones don't meet your needs.

Built-in Field Validators
Some common built-in validators include:

MinLengthValidator : Ensures the input has at least a minimum number of characters.

MaxLengthValidator : Ensures the input does not exceed a maximum number of
characters.

EmailValidator : Ensures the input is a valid email address.

URLValidator : Ensures the input is a valid URL.

RegexValidator : Ensures the input matches a specified regular expression.

from django import forms

from django.core.validators import MinLengthValidator, EmailValidat

class UserRegistrationForm(forms.Form):

 username = forms.CharField(max_length=100, validators=[MinLengt

 email = forms.EmailField(validators=[EmailValidator()])

 password = forms.CharField(widget=forms.PasswordInput, validato

Django. 24

Custom validators

from django import forms

from django.core.exceptions import ValidationError

def validate_even(value):

 if value % 2 != 0:

 raise ValidationError(f'{value} is not an even number')

class NumberForm(forms.Form):

 number = forms.IntegerField(validators=[validate_even])

In this example, the validate_even function checks if the input value is an even number. If
it's not, a ValidationError is raised, which will be displayed to the user.

Handling validation errors:
Form-sets
A Formset in Django is a layer of abstraction to work with multiple forms on the same page.
Instead of handling each form individually, formsets allow you to manage a collection of
forms as a single entity, making it easier to create, update, and delete multiple instances of a
model or process multiple forms simultaneously.

Formset parameters
1. extra: int | None = None the number of forms displayed.

2. max_num: int | None = None : Limits the max number of forms can be displayed.

3. can_order: bool = False : Adds an order field for each form in a formset, allowing user to
specify the order of the forms.

4. can_delete: bool = True : Adds a checkbox to each form that allows form to be marked
for deletion when the formset is submitted.

5. min_num: int = 0 : Enforces a minimum number of forms that must be submitted in the
formset.

6. validation_min: bool = False : raises a validation error is min_num rule is violated
submitting the form.

7. validate_max: bool = False : Raises a validation error if submitting the form the
max_num rule was violated.

8. formset: FormasetClass : Allows to specify custom formset class…

9. fields: list[str] | None = None : Specifies which fields should be included in the form
when using a ModelFormSet .

10. exclude : Specifies which fields should be excluded from the form when using a
ModelFormSet .

11. widgets: dict :Allows you to override the default widgets for specific fields in the
formset.

Types of Formsets

Django. 25

Formset (basic)
These are used to manage multiple instances of a standard Django form (not tied to any
model). You use the formset_factory method to create a basic formset.

from django import forms

from django.forms import formset_factory

class ContactForm(forms.Form):

 name = forms.CharField()

 email = forms.EmailField()

ContactFormSet = formset_factory(ContactForm, extra=3)

Here, ContactFormSet is a formset that will display three ContactForm instances by default.

Parameters:

ModelFormset

These are used to manage multiple instances of a form tied to a Django model. The forms
in a model formset correspond to model instances, and they can be used to create,
update, or delete multiple model instances. You use the modelformset_factory method to
create a model formset.

from django import forms

from django.forms import modelformset_factory

from myapp.models import Author

class AuthorForm(forms.ModelForm):

 class Meta:

 model = Author

 fields = ['name', 'email']

AuthorFormSet = modelformset_factory(Author, form=AuthorForm, extra=2)

This AuthorFormSet will display forms for two new Author instances by default, alongside
forms for existing authors.

Inline form-set (1:N)
These are a specialized version of model formsets used to manage related objects,
typically for handling related models in a parent-child relationship (e.g., managing books
related to a specific author). Inline formsets are created using the inlineformset_factory
method.

Inline formsets are useful for managing related objects. For example, if you have an Author
model and a related Book model, you can manage books related to a specific author.

from django.forms import inlineformset_factory

from myapp.models import Author, Book

Django. 26

BookFormSet = inlineformset_factory(Author, Book, fields=('title', 'pu

This BookFormSet can be used to display and manage books related to a specific author.

Key Features

extra Parameter: Controls how many empty forms are displayed in addition to the
existing forms.

can_delete Parameter: Allows you to include a checkbox in each form to mark it for
deletion.

can_order Parameter: Adds an ordering field to each form in the formset, useful for
ordering objects in a list.

Use Cases
Basic Formset: Useful for handling multiple forms that don't directly correspond to
models, such as a survey with multiple questions.

Model Formset: Ideal for batch-creating or updating model instances.

Inline Formset: Perfect for managing related objects in a parent-child relationship, like
handling multiple Book instances related to an Author .

Formset in a view

from django.shortcuts import render, redirect

from myapp.forms import ContactFormSet

def manage_contacts(request):

 if request.method == 'POST':

 formset = ContactFormSet(request.POST)

 if formset.is_valid():

 # Process the form data

 for form in formset:

 print(form.cleaned_data)

 return redirect('success')

 else:

 formset = ContactFormSet()

 return render(request, 'manage_contacts.html', {'formset': formset})

File uploads
1. Create a Form with a FileField

Django's forms.FileField is used to handle file uploads in forms. If you're also uploading
images, you can use forms.ImageField .

class UploadImageForm(forms.Form):

 title = forms.CharField(max_length=50)

 image = forms.ImageField()

Django. 27

2. Modify HTML form:

Make sure that your HTML form includes the enctype="multipart/form-data" attribute, which
is necessary for file uploads.

<form method="post" enctype="multipart/form-data">

 {% csrf_token %}

 {{ form.as_p }}

 <button type="submit">Upload</button>

</form>

3. Handle the upload file in the views;

In your view, you'll need to handle the uploaded file. You can access the uploaded file
using request.FILES . Here's how to handle the file upload:

from django.shortcuts import render

from django.http import HttpResponseRedirect

from .forms import UploadFileForm

Function to handle file upload

def handle_uploaded_file(f):

 with open(f'media/{f.name}', 'wb+') as destination:

 for chunk in f.chunks():

 destination.write(chunk)

def upload_file(request):

 if request.method == 'POST':

 form = UploadFileForm(request.POST, request.FILES)

 if form.is_valid():

 handle_uploaded_file(request.FILES['file'])

 return HttpResponseRedirect('/success/') # Redirect afte

 else:

 form = UploadFileForm()

 return render(request, 'upload_file.html', {'form': form})

4. Configure media settings:

STATIC_URL = 'static/'

MEDIA_URL = '/media/'

MEDIA_ROOT = os.path.join(BASE_DIR, 'media/')

STATICFILES_DIRS = [

 BASE_DIR / 'static'

]

5. Configure Media URLs for production and debug:

Django. 28

from django.conf.urls.static import static

from django.urls import path, include, re_path

from django.conf import settings

import debug_toolbar

NOTE: Add in production!

from django.conf.urls.static import static

from django.views.static import serve

urlpatterns = [

 # NOTE: Uncomment in production!

 # re_path(r'^media/(?P<path>.*)$', serve, {'document_root': setti

 # re_path(r'^static/(?P<path>.*)$', serve, {'document_root': sett

 path('admin/', admin.site.urls),

 path('posters/', include(('posters_app.urls', 'posters_app'), nam

 path('user_account/', include(('user_account_app.urls', 'user_acc

 path('user_auth/', include("django.contrib.auth.urls")),

]

NOTE: Comment in Production!

if settings.DEBUG:

 urlpatterns += [path('__debug__/', include(debug_toolbar.urls))]

 urlpatterns += static(settings.MEDIA_URL, document_root=settings.

6. Handle upload to the models.

Security
Use CSRF token.

Testing forms
Testing Django forms in tests.py involves verifying the behavior of the form’s validation,
including its success and failure conditions.

Import
from django.test import TestCase

from .forms import ContactForm

Test Valid Form Data

class ContactFormTest(TestCase):

 def test_contact_form_valid(self):

 form_data = {

 'name': 'John Doe',

 'email': 'john@example.com',

 'message': 'This is a test message.'

 }

Django. 29

 form = ContactForm(data=form_data)

 self.assertTrue(form.is_valid())

In this test:

You pass valid data to the form and check if form.is_valid() returns True .
Test Invalid Form Data
Here, you test the behavior of the form when given invalid or missing data. You can check
that the form returns errors for the required fields or for any custom validation rules.

class ContactFormTest(TestCase):

 def test_contact_form_invalid(self):

 # Missing required fields

 form_data = {

 'name': '',

 'email': 'invalid-email',

 'message': ''

 }

 form = ContactForm(data=form_data)

 self.assertFalse(form.is_valid())

 self.assertEqual(len(form.errors), 3) # We expect 3 errors: n

 self.assertIn('name', form.errors)

 self.assertIn('email', form.errors)

 self.assertIn('message', form.errors)

Test Custom Validation
If your form contains custom validation methods (e.g., clean_<field>() methods), you
should test those as well. Example: Suppose you have a custom validation method that
checks if the email domain is example.com .

class ContactForm(forms.Form):

 name = forms.CharField(max_length=100)

 email = forms.EmailField()

 message = forms.CharField(widget=forms.Textarea)

 def clean_email(self):

 email = self.cleaned_data.get('email')

 if not email.endswith('@example.com'):

 raise forms.ValidationError("Email must be from the domain

 return email

class ContactFormTest(TestCase):

 def test_contact_form_custom_email_validation(self):

 form_data = {

 'name': 'John Doe',

Django. 30

 'email': 'john@gmail.com',

 'message': 'This is a test message.'

 }

 form = ContactForm(data=form_data)

 self.assertFalse(form.is_valid())

 self.assertIn('email', form.errors)

 self.assertEqual(form.errors['email'], ["Email must be from th

Test Bound Data
You can also test how the form binds data and initializes with it, ensuring that form fields
hold the correct values when rendered back to the user after a failed submission.

class ContactFormTest(TestCase):

 def test_contact_form_bound_data(self):

 form_data = {

 'name': 'John Doe',

 'email': '',

 'message': 'This is a test message.'

 }

 form = ContactForm(data=form_data)

 self.assertFalse(form.is_valid())

 self.assertEqual(form.cleaned_data['name'], 'John Doe')

 self.assertEqual(form.cleaned_data['message'], 'This is a test

 self.assertNotIn('email', form.cleaned_data) # Email is inval

Test Form Rendering (optional)
While not common, you can test how a form is rendered by checking if the expected
fields are in the HTML output. This ensures that forms are displayed correctly.

class ContactFormTest(TestCase):

 def test_contact_form_rendering(self):

 form = ContactForm()

 rendered_form = form.as_p()

 self.assertIn('name', rendered_form)

 self.assertIn('email', rendered_form)

 self.assertIn('message', rendered_form)

AJAX forms

Full Workflow:
The user fills out the form and submits it.

The form submission triggers an AJAX request.

Django receives the AJAX request, validates the form, and returns a JSON response.

If the form is valid, a success message is shown.

Django. 31

If there are errors, they are displayed without reloading the page.

1. Create Django Form:

from django import forms

class ContactForm(forms.Form):

 name = forms.CharField(max_length=100)

 email = forms.EmailField()

 message = forms.CharField(widget=forms.Textarea)

2. Create a view to handle the form:

The view will process the form submission and return a JSON response to the AJAX
request. This view can handle both regular and AJAX form submissions.

from django.http import JsonResponse

from django.shortcuts import render

from .forms import ContactForm

def contact_view(request):

 if request.method == 'POST':

 form = ContactForm(request.POST)

 if form.is_valid():

 # Process the form (e.g., send email, save to DB, etc.)

 # Return a JSON response if the form is valid

 return JsonResponse({'success': True})

 else:

 # Return form errors as JSON

 return JsonResponse({'success': False, 'errors': form.err

 else:

 form = ContactForm()

 return render(request, 'contact_form.html', {'form': form})

3. Create URL pattern:

from django.urls import path

from .views import contact_view

urlpatterns = [

 path('contact/', contact_view, name='contact'),

]

4. Create HTML form:

In the template, create a form and add JavaScript to handle the AJAX submission.

<form id="contactForm" method="post" action="{% url 'contact' %}">

 {% csrf_token %}

Django. 32

 {{ form.as_p }}

 <button type="submit">Submit</button>

</form>

<!-- Display error or success message -->

<div id="formMessages"></div>

<script src="https://code.jquery.com/jquery-3.6.0.min.js"></script>

<script>

 $(document).ready(function() {

 $('#contactForm').on('submit', function(event) {

 event.preventDefault(); // Prevent the form from submitt

 // Serialize the form data

 var formData = $(this).serialize();

 // Send the form data via AJAX

 $.ajax({

 url: $(this).attr('action'),

 type: $(this).attr('method'),

 data: formData,

 dataType: 'json',

 success: function(response) {

 if (response.success) {

 // Display success message

 $('#formMessages').html('<p>Form submitted su

 } else {

 // Display error messages

 var errors = '';

 for (var field in response.errors) {

 errors += '<p>' + field + ': ' + response

 }

 $('#formMessages').html(errors);

 }

 },

 error: function(xhr, errmsg, err) {

 // If there's an error in the AJAX request

 $('#formMessages').html('<p>There was an error su

 }

 });

 });

 });

</script>

5. Handle CSRF Token:

In Django, CSRF protection is enabled by default. Make sure to include the CSRF token in
the form as well as in the AJAX request.

Django. 33

If you’re not using jQuery, you can include the CSRF token in the request header using
the following JavaScript snippet:

function getCookie(name) {

 let cookieValue = null;

 if (document.cookie && document.cookie !== '') {

 const cookies = document.cookie.split(';');

 for (let i = 0; i < cookies.length; i++) {

 const cookie = cookies[i].trim();

 if (cookie.substring(0, name.length + 1) === (name + '=')

 cookieValue = decodeURIComponent(cookie.substring(nam

 break;

 }

 }

 }

 return cookieValue;

}

const csrftoken = getCookie('csrftoken');

$.ajaxSetup({

 beforeSend: function(xhr, settings) {

 if (!/^(GET|HEAD|OPTIONS|TRACE)$/.test(settings.type) && !thi

 xhr.setRequestHeader("X-CSRFToken", csrftoken);

 }

 }

});

6. Return JSON response:

In the contact_view , return a JsonResponse for both success and error scenarios. The
success response may include a success message, and the error response should
include the form validation errors.

Caching
Django provides a powerful Framework for caching. Django does not always need a caching
backend like Redis, it is able to perform some cache operation on its own

Server side
Caching backend supported by Django
1. Local-memory Caching:

a. Description: This cache backend stores cached data in memory of the running
Django server process. it is the simplest form of caching that does not require any
dependencies.

b. Use Case: low-traffic website or development environment where there are no
concerns about cached data persistence after server restarts.

c. Example Configuration:

Django. 34

CACHES = {

 'default': {

 'BACKEND': 'django.core.cache.backends.locmem.LocMemCache'

 }

}

2. File-Base Caching:

a. Description: Stores cache data in files on the local file system. This approach is
straightforward and doesn’t require additional software but can be slower than in-
memory cache.

b. Use Case: from low to medium traffic websites where the is more data that can fit in
memory.

c. Example Configuration:

CACHES = {

 'default': {

 'BACKEND': 'django.core.cache.backends.filebased.FileBased

 'LOCATION': '/var/tmp/django_cache',

 }

}

3. Database Caching:

a. Description: Uses the data base configured for Django application to store cache
data. Ensure the data persistence after server reload. But slower than in-memory
cache.

b. Use Cases: When cache retrieval speed doesn’t matter but data persistence across
server restarts is necessary.

c. Example Configuration:

CACHES = {

 'default': {

 'BACKEND': 'django.core.cache.backends.db.DatabaseCache',

 'LOCATION': 'my_cache_table',

 }

}

Note: You must create the cache table in your database using the management
command python manage.py createcachetable .

4. Dummy Caching:

a. Description: The backend that doesn’t actually cache anything.

b. Use Case: Development environments when you want to disable caching without
removing code.

Django. 35

c. Example Configuration:

CACHES = {

 'default': {

 'BACKEND': 'django.core.cache.backends.dummy.DummyCache',

 }

}

External Caching backends
Integrating an external caching backend like Redis or Memcached can significantly improve
performance, especially for high-traffic sites.

Redis

1. Redis:

a. Description: An in-memory database that can be user as a cache, message broker,
and database.

b. Use Case: ideal for high-traffic websites. Avail data persistence and replication.

c. Example Configuration:

CACHES = {

 'default': {

 'BACKEND': 'django_redis.cache.RedisCache',

 'LOCATION': 'redis://127.0.0.1:6379/1',

 'OPTIONS': {

 'CLIENT_CLASS': 'django_redis.client.DefaultClient',

 }

 }

}

2. Memcached:

a. Description: A high-performance, distributed memory object caching system
designed to speed up dynamic web applications by alleviating database load.

b. Use Case: Great for applications where distributed caching is needed across multiple
servers or processes.

c. Example Configuration:

CACHES = {

 'default': {

 'BACKEND': 'django.core.cache.backends.memcached.Memcached

 'LOCATION': '127.0.0.1:11211',

 }

}

Caching in the use:

https://www.notion.so/Redis-4b9e6cb98da04ece84092d06af8f01e4?pvs=21
https://www.notion.so/Redis-4b9e6cb98da04ece84092d06af8f01e4?pvs=21

Django. 36

Cache objects in views

Client side
Client side caching (general)
Clint side caching is done using the Cache-control heading.

How Client-Side Caching Works:
1. Initial Request: The first time a client requests a resource, the server sends it to the

client, along with cache-control headers that specify how long the resource can be
cached.

2. Subsequent Requests: On future visits, the browser checks if the cached resource is still
valid (based on the cache-control headers). If it's valid, the browser uses the cached
version instead of making a new request to the server.

3. Expired Cache: When a cache expires or the resource is updated, the browser fetches
the updated resource from the server.

Cache-Control Headers:
Cache-Control : Defines caching directives, like how long the resource should be cached
(e.g., max-age=3600 means cache for 1 hour).

ETag : A unique identifier for a specific version of a resource. If the ETag changes, the
browser knows to request a fresh version of the resource.

Expires : Specifies an exact expiration time for the cached resource.

Last-Modified : The last time the resource was changed. If the resource has been modified
since the cached version, the browser fetches the new one.

Client-Side Caching in Django:
Django itself does not directly control the browser's cache, but it provides tools to help
manage client-side caching through HTTP headers and static file management:

1. Setting Cache-Control Headers: Django allows you to set cache-control headers using
middleware or view decorators:

You can use the @cache_control decorator to set caching policies for specific views.

from django.views.decorators.cache import cache_control

@cache_control(max_age=3600, must_revalidate=True)

def my_view(request):

 # Your view logic here

2. Static File Versioning: When using Django's django.contrib.staticfiles , the collectstatic
management command can add version identifiers (hashes) to static files to help with
cache busting (forcing the browser to fetch new versions when files change).

By enabling the STATICFILES_STORAGE setting to use the ManifestStaticFilesStorage , you can
automatically append a hash to static file names:

Django. 37

STATICFILES_STORAGE = 'django.contrib.staticfiles.storage.Manifest

3. Middleware:

Django provides the UpdateCacheMiddleware and FetchFromCacheMiddleware for server-side
caching, but to manage client-side caching, you’d generally use a combination of
headers (like Cache-Control) or rely on static file management.

Authentication and Authorization
⚠️ Django will not automatically disallow a User to get to an object the user has no permission
to. You need to check if a User has a Permission to a certain object (like view object, etc.)
manually.

Key features of Django's authentication and authorization system include:

Built-in views and forms for user registration, login, and password management

A user model that can be extended to include additional fields

Decorators and mixins to restrict access to views based on permissions

An admin interface for managing users, groups, and permissions

This system allows developers to implement complex access control schemes while keeping the
codebase clean and maintainable.

Group management and user permissions in Django are powerful features that allow you to
control access to different parts of your application. In order to grant a user or a group of users
a permission a user needs to be registered and authenticated:

Register & delete users
Authentication

https://docs.djangoproject.com/en/5.1/topics/auth/

Type:
Session key based
You can authenticate users based on their session key. Each website visitor get a cookie
‘session id’ based on this cookie Django assign a session_key to each `session id'.

Middleware
The session_key is not automatically granted to all Anonymous visitors but it can be
enabled via Middleware that checks whether a visitor has a session_key or not, and if
not the session key is generated and assigned before the request reached any of the
views.

Token based
User based

User registration (sign Up)

https://docs.djangoproject.com/en/5.1/topics/auth/

Django. 38

Django does not provide built-ins such as user Registration URL, so it is better to
create an application for user, where everything related to users will be stored.

1. Create an application user_account . include in into INSTALLED_APPS in the
settings.py and urls.py .

2. Create a view for user registration, so as template and add URL in the urls.py .

3. User creating view based on a built-in UserCreatingForm :

from django.contrib.auth.forms import UserCreationForm

from django.contrib.auth import login

Additionally you can login a newly create user.

def user_sign_up(request):

 if request.method == 'POST':

 form = UserCreationForm(request.POST)

 if form.is_valid():

 form.save() # Just create a user

 login(request, form.save()) # If want to login a use

 return redirect('user_account_app:view_user_account'

 else:

 form = UserCreationForm()

 return render(request, 'user_account_app/user_sign_up.html',

Built-in
Django provides a build-in module for authentication.

Requirements:

1. URLs connection:
path('', include('django.contrib.auth.urls'))

2. Create HTML pages at Projects’s base templates folder in the registration sub
folder:

a. login.html

b. logout.html

c. reg.html or sign-up.html PS: Render this view a custom view, as Django does not
support registration page on its own. Use UserCreatingForm(request.POST) for
registering new users.

Django will render these specific templates automatically whenever user needs to
login or logout. Inside of the login.html place a POST form that renders {{ form }} .

3. Additional settings at settings.py
LOGIN_REDIRECT_URL = "/polls/"

LOGOUT_REDIRECT_URL = "/registration"

Django has built-in methods for managing User Auth.
from django.contrib.auth import login, logout, authenticate

Django. 39

1. logint(request, user) .Logs a user in.

Built-in methods
In order to redesign built-in pages you need to create a HTML page with the same
name as the URI you want to redesign. E.g. /accounts/password_reset [name='somethung'] =⇒
password_reset.html .

Django has many built-in methods like:

1. password_reset

2. password_change etc.
Custom
You can write your own login logic using AuthenticationForm . Do not forget to create the
login_template.html and add the login view to the urls.py .

from django.contrib.auth.forms import AuthenticationForm

from django.contrib.auth import login

def login(request):

if request.method == "POST":

form = AuthenticationForm(data=request.POST)

if form.is_valid():

LOGIN HERE

login(request, form.get_user())

return redirect('myapp:home')

else:

form = AuthenticationForm()

return render(request, 'login_templage.html', {"form": form})

Logout
Custom logout logic.

from django.contrib.auth import login, logout

def logout(request):

if request.method == "POST":

logout(request)

return redirect("main:home")

else:

form = ...

return render(request, 'custom_auth/logout.html, {"form": form}

Authorization
Key thing to know:

Django. 40

Process of granting permissions to an Authenticated user or device. Django, automatically,
creates a list of available permissions (see Django admin.), these permissions are stored at
auth_permission table for users permissions and auth_group_permissions for Group permissions.
Permissions are assigned to each user at the auth_user_user_permissions table [1:M].

Granting users permissions
User Permissions: Django provides a flexible system for defining and assigning
permissions to users. Permissions can be assigned directly to individual users or to
groups. These permissions control what actions users can perform within the application,
such as creating, reading, updating, or deleting specific types of data.

View methods (URLs) user access.
Django can control access to certain views (function based and class based views). It
is done mainly via the login_required decorator from django.contrib.auth.decorators .This
decorator can be used as decorator for views functions and classes in the views.py file.
And, as a method in the urls.py file.

Examples:

from django.urls import path

from django.contrib.auth.decorators import login_required

from . import views

urlpatterns = [

 path('create', login_required(views.create), name='create'),

 path('<str:slug>', login_required(views.index), name='index'),

 path('', login_required(views.home), name='home'),

]

from django.contrib.auth.decorators import login_required

@login_required

def home_view(request)

return HTTPResponse('<h1>Home Page</h1>')

The login_required decorator can take in several arguments:

1. login_url: str = 'app/login/ -Redirect non logged in user to the log in page.

Class based view
With a class based view you need to user the LoginRequiredMixin class, instead f the
login_required decorator.

The LoginRequiredMixin is designed specifically for class-based views and ensures that
the user is authenticated before they can access the view.

How to Use LoginRequiredMixin
Here’s a step-by-step guide to using the LoginRequiredMixin with a class-based view:

https://docs.djangoproject.com/en/5.1/topics/auth/

Django. 41

1. Import the LoginRequiredMixin : You need to import LoginRequiredMixin from
django.contrib.auth.mixins .

2. Add LoginRequiredMixin to Your View: The LoginRequiredMixin should be the first mixin
in the inheritance chain of your class-based view to ensure that the login
requirement is checked before anything else.

Example:

from django.contrib.auth.mixins import LoginRequiredMixin

from django.views.generic import TemplateView

class ProtectedView(LoginRequiredMixin, TemplateView):

 template_name = 'protected_page.html'

 # Optionally, you can set a custom `login_url` for this view

 login_url = '/custom_login/'

 # Optionally, you can specify a redirect field name (default is

 redirect_field_name = 'redirect_to'

HTML access in Templates

Revoking users permissions (banning)
Adding custom permissions
You can create a custom permission object and add it to a specific user(s) or group(s).

Group management
Group Management: Django allows you to create and manage user groups. Groups are a
way to categorize users and assign permissions to multiple users at once. This simplifies the
process of managing permissions for large numbers of users with similar access needs.

In order to manage users groups and permissions the superuser is required. To create one
user python3 manage.p y createsuperuser .

Group Creation
Each user present in a group will automatically share permissions that were chosen for
the group.

Via Django admin panel
1. Add a new group in Django Admin panel, name it.

2. Choose permissions for this group.

Via Django shell
1. Open Django shell: python3 manage,py shell .

2. Import required modules:

a. from django.contrib.auth.models import Group, Permission, User

http://manage.pt/

Django. 42

b. from django.contrib.contenttypes.models import ContentType .

3. Create a new Group:

a. mod, created = Group.object.get_or_create(name="mod") Name can be any.

4. After creating the group add permissions to it:

a. Find appropriate permissions:

i. Get a model content type, so you could find permissions related to a particular
model:

ct = ContentType.object.get_for_model(model=Poster) .

ii. Get a Query-Set of permission for the model: perms =
Permission.object.filter(content_type=ct) .

b. Add permissions to the group: mod.Permissions.add(*perms) ,

you can either unpack all avail permissions or add them one by one.

5. Add a User to the Group:

a. Get a user: user = User.object.filter(username="sergei").first() .

b. Add the user to the group: mod.user_set.add(user) .
Check Groups within SQL query

SELECT

auth_group.name AS groupname,

auth_user.username,

auth_user.is_staff

FROM auth_user

LEFT JOIN auth_user_groups ON auth_user.id = auth_user_groups.user_id

LEFT JOIN auth_group ON auth_group.id = auth_group.id;

Management commands
Creating custom commands

Signals
Table of built-in signals

Internalization & Localization (i18h and l10n)

Internalization
The process of preparing your application for localization, i.e., making it able to support multiple
languages.

Localization
Adapting your application for different languages, regions, or cultures (e.g., translating text,
formatting dates, numbers, etc.).

Django. 43

Settings
1. Localization settings: (Note. can user gettext to translate name of the languages.)

LANGUAGE_CODE = 'en-us'

TIME_ZONE = 'UTC'

USE_I18N = True # strings translation.

USE_L10N = True # local time, data and number formats.

USE_TZ = True # Timezone support.

LANGUAGES = [

 ('en', 'English'),

 ('ru', 'Russian')

]

LOCALE_PATHS = [os.path.join(BASE_DIR, 'locale')]

2. Middleware set up. Need to be set in a specific place, after session Middleware and
before common Middleware that is responsible for URL routing.

MIDDLEWARE = [

 'django.middleware.security.SecurityMiddleware',

 'django.contrib.sessions.middleware.SessionMiddleware',

 'django.middleware.locale.LocaleMiddleware', # Localization midd

 'django.middleware.common.CommonMiddleware',

 'django.middleware.csrf.CsrfViewMiddleware',

 'django.contrib.auth.middleware.AuthenticationMiddleware',

 'django.contrib.messages.middleware.MessageMiddleware',

 'django.middleware.clickjacking.XFrameOptionsMiddleware',

 # Custom. Avail for all project apps.

 'posters.middleware.EnsureSessionKeyMiddleware',

]

3. Set Up URLs

from django.contrib import admin

from django.conf.urls.static import static

from django.urls import path, include, re_path

from django.conf import settings

import debug_toolbar

NOTE: Add in production!

from django.conf.urls.static import static

from django.views.static import serve

from django.conf.urls.i18n import i18n_patterns

urlpatterns = [

 # NOTE: Uncomment in production!

 # re_path(r'^media/(?P<path>.*)$', serve, {'document_root': setti

Django. 44

 # re_path(r'^static/(?P<path>.*)$', serve, {'document_root': sett

 path('admin/', admin.site.urls),

 path('i18n/', include('django.conf.urls.i18n')),

]

urlpatterns += i18n_patterns (

 path('posters/', include(('posters_app.urls', 'posters_app'), nam

 path('user_account/', include(('user_account_app.urls', 'user_acc

)

NOTE: Comment in Production!

if settings.DEBUG:

 urlpatterns += [path('__debug__/', include(debug_toolbar.urls))]

 urlpatterns += static(settings.MEDIA_URL, document_root=settings.

Workflow
1. In templates:

a. Load tag: {% load i18n %} .

b. Use {% trans "this text will be translated" %} in templates. Example:

{% load i18n %}

<p>{% trans "Welcome to my website!" %}</p>

2. In views and etc.

a. import from django.utils.translation import gettext as _ .

b. Use like in the example:

def my_view(request):

 message = _("Welcome to my website!")

 return render(request, 'my_template.html', {'message': message

3. Create the locale directory in the project root or each app individually.

4. Make locale files: python3 manage.py makemessages --all .or -l ru . For a specific language.

5. Go to locale directoty and write translation to each string.

6. Compile translations: python3 manage.py compilemessages .

Language select switch
1. Load tag in the template: {% load i18n %} .

2. Example:

<li class="nav-item dropdown">

<a href="#" class="dropdown-toggle" data-toggle="dropdown" role="

<ul class="dropdown-menu" aria-labelledby="navbarDropdown">

http://manage.py/
http://manage.py/

Django. 45

 {% get_current_language as LANGUAGE_CODE %}

 {% get_available_languages as LANGUAGES %}

 {% get_language_info_list for LANGUAGES as languages %}

 {% for lang in languages %}

 <a class="dropdown-item" href="/{{ lang.code }}{{ request.get_f

 {{ lang.name_local }}

{% endfor %}

General knowledge:
Components

Django is a high-level Python web framework that encourages rapid development and clean,
pragmatic design. It is composed of several components that work together to provide a full-
featured web development experience. Here is a list of the core components of the Django
framework:

Components
1. Models:

a. Description: Models define the structure of data in each application, and provide a
way to manage it through Django ORM.

b. Key features:

i. Table (model) creation. Supports custom fields and functionality. Like Image path
building using Pillow module and data validation using validators.

ii. Handle database migrations.

iii. Query Database using high-level API.

2. Views:

a. Description: View handle the logic of an application. They accept and return data to
the user. They can fetch data from the db, apply business logic, and pass data to
templates.

b. Key features:

i. Function-Based Views (FBVs): Single function can handle requests and send
responses.

ii. Class-Based Views (CBVs): Offering a more modular and reusable approach by
Using Python classes to encapsulate some logic.

3. Templates:

a. Description: Django Templates Language can create dynamic web pages.

Django. 46

b. Key features:

i. Tags. {% for value in QuerySet %} etc.

ii. Filters. {{ value|lower }} etc.

iii. Template inheritance to reuse common elements. {% extends from 'base.html' %} .

4. URLs and Routing:

a. Description: Django URLs dispatcher allows to differ URL patterns that map to views,
enabling clean and organized URLs structure.

b. Key features:

i. URLs defined using Django functions path() and re_path() .

ii. Support name URL patterns for easy reverse URL look ups.

iii. Middleware integrating for processing requests and responses globally. E.g.
‘Ensure session_key exists’ Middleware.

5. Forms:

a. Description: Django powerful form handling library to process and validate user inpt
data.

b. Key features:

i. Form classes to define, validation and form rendering.

ii. Custom validating and error handling.

6. Admin interface:

a. Description: built-in interface for managing applications data and models.

b. Key features:

i. Auto generate CRUD interface.

ii. User authentication and permission management.

7. Authentication and Authorization:

a. Description: Built-in authentication system for managing users (Anonymous as well),
passwords and permissions.

b. Key features:

i. Built-in views for logging, logout, password reset, etc.

ii. User models and groups for managing users roles and permissions.

iii. Custom user modes for extending default user functionality.

8. Middleware:

a. Description: Middleware is the way to process requests before they reach views or
after the view has processed.

b. Key feature:

i. Built-in Middleware for security, session management authentication, and more.

Django. 47

ii. Ability to make custom Middleware. Useful for logging, request modification,
headers modification, checking views and models for the ability to accept
requests.

9. Internalization and Localization (i18n and l10n):

a. Description: Adds language support and formats.

b. Key feature:

i. Built-in translation system for text within templates and code.

ii. Local Middleware to track user preferences and adjust content for them.

iii. Formatting dates, time, etc.

10. Testing:

a. Description: Django testing framework based on Unittest library.

b. Key features:

i. Unittesting for model, forms, view and other components.

ii. Client test by simulating request and checking responses.

iii. Database testing for data integrity.

11. Security features:

a. Built-in security feature to protect against common web vulnerabilities.

b. Key Features:

i. Cross-Site request Forgery (CSRF) protection.

ii. Cross-Site Scripting (XSS) protection.

iii. SQL injection protection.

iv. Clickjacking protection with the X-Frame-Options Middleware.

12. Django Rest Framework:

a. Description: Although not a part of the core Django framework, Django Rest
Framework is a powerful and flexible toolkit for building Web APIs.

b. Key features:

i. Serializes for converting complex data type to and from JSON.

ii. Class-based views for handling HTTP methods.

iii. Authentication and permission classes for API security.

13. Django Channels:

a. Description: Django Channels extends Django functionality to handle WebSockets,
allowing real-time communication and asynchronous task handling.

b. Key Features:

i. Support WebSockets and background tasks.

ii. Asynchronous views and consumers for handling long-running processes.

iii. Integration with Django ORM and Middleware.

Django. 48

14. Caching:

a. Description: Django provides various caching mechanisms.

b. Key feature:

i. In-memory caching, file-based caching, and data caching.

ii. Cache Framework for setting up different cache backends.

iii. Decorators and templates tags for caching views and template fragments.

15. Signals:

a. Description: Signals allow decoupled applications to get notified when certain actions
occur elsewhere in the application.

b. Key features:

i. Built-in signals for common events (e.g., post_save , pre_delete .).

ii. Ability to make custom signals.

iii. Receiver functions to handle signals.

16. Management Commands:

a. Description: Set of management command to perform different task.

b. Key Features:

i. Built-in commands: runserver , makemigrations , etc.

ii. Ability to make custom management commands.

iii. Extensible command system using Django’s management API.

Django Module Structure Overview
Django’s source code is organized into a collection of packages and modules, each responsible
for different parts of the framework

Models structure
1. django.conf

Description: Provides Django’s configuration framework and handles project settings.

Key Modules:

django.conf.settings : Access and manage Django settings.

django.conf.urls : Tools for URL routing, including url() and include() .

2. django.core

Description: Contains the core components of Django, including utilities,
management commands, and exceptions.

Key Modules:

django.core.exceptions : Common exceptions used throughout Django (e.g.,
ValidationError , ObjectDoesNotExist).

django.core.handlers : Request and response handling.

Django. 49

django.core.management : Command-line utilities (e.g., startproject , makemigrations).

django.core.mail : Email utilities for sending emails.

django.core.cache : Caching framework for managing cache backends.

django.core.serializers : Tools for serializing and deserializing data (e.g., JSON,
XML).

3. django.db

Description: Provides Django’s database abstraction layer, including ORM, models,
and query APIs.

Key Modules:

django.db.models : Core module for defining models and fields.

django.db.models.query : QuerySet classes and related utilities.

django.db.backends : Database backends for various databases (e.g., PostgreSQL,
MySQL, SQLite).

django.db.migrations : Tools for managing database schema changes through
migrations.

4. django.http

Description: Contains classes and functions for handling HTTP requests and
responses.

Key Modules:

django.http.HttpRequest : Represents an HTTP request.

django.http.HttpResponse : Represents an HTTP response.

django.http.JsonResponse : A subclass of HttpResponse for JSON data.

django.http.Http404 : Exception raised for a "Page Not Found" error.

5. django.shortcuts

Description: Provides helper functions to reduce the amount of code needed for
common operations.

Key Functions:

render() : Combines a template with a context dictionary and returns an
HttpResponse object.

redirect() : Returns an HttpResponseRedirect to the given URL.

get_object_or_404() : Retrieves an object or raises a Http404 exception if not found.

get_list_or_404() : Retrieves a list of objects or raises a Http404 exception if none
are found.

6. django.template

Description: The template system, which allows for rendering HTML and other text-
based formats.

Key Modules:

Django. 50

django.template.loader : Functions for loading templates.

django.template.backends : Interfaces for different template engines.

django.template.context : Context classes for templates.

django.template.defaulttags : Built-in template tags.

django.template.defaultfilters : Built-in template filters.

7. django.urls

Description: Tools for URL routing and handling.

Key Modules:

django.urls.path : Function to define URL patterns using the newer path converters.

django.urls.re_path : Function to define URL patterns using regular expressions.

django.urls.include : Function to include other URL configurations.

django.urls.reverse : Function to reverse resolve URLs.

8. django.utils

Description: A collection of utility functions and classes for various tasks.

Key Modules:

django.utils.timezone : Time zone-related utilities and classes.

django.utils.translation : Tools for internationalization and localization.

django.utils.decorators : Common decorators used in Django views.

django.utils.datastructures : Data structures like MultiValueDict .

9. django.forms

Description: The form handling framework, which allows for creating and validating
forms.

Key Modules:

django.forms.models : ModelForm classes that map models to forms.

django.forms.fields : Form field classes (e.g., CharField , EmailField).

django.forms.widgets : Form widget classes (e.g., TextInput , Select).

django.forms.formsets : Tools for handling formsets, groups of forms.

10. django.contrib

Description: A collection of optional Django applications that provide common
functionalities.

Key Submodules:

django.contrib.admin : The Django admin interface for managing models.

django.contrib.auth : The authentication system, including user models and
permissions.

django.contrib.sessions : Session management for tracking user sessions.

Django. 51

django.contrib.sites : Framework for managing multiple sites with one Django
installation.

django.contrib.staticfiles : Tools for managing static files (e.g., CSS, JavaScript).

11. django.middleware

Description: Middleware is a way to process requests globally before they reach the
view or after the view has processed the request.

Key Modules:

django.middleware.csrf.CsrfViewMiddleware : Provides Cross-Site Request Forgery
protection.

django.middleware.common.CommonMiddleware : Performs various common operations, like
URL rewriting and ETag handling.

django.middleware.security.SecurityMiddleware : Provides various security
enhancements, such as setting HTTP headers.

12. django.test

Description: Provides tools and classes for testing Django applications.

Key Modules:

django.test.TestCase : A subclass of Python's unittest.TestCase that supports Django-
specific features.

django.test.Client : A test client that acts like a browser for testing views and URLs.

django.test.SimpleTestCase : A subclass for tests that do not require database access.

