
Docker 1

🐳
Docker
Table of Contents:

⚙ Docker Config Templates

Description
Docker file Image Container.

Docker file
Dockerfile. It is a script that contains a series of instructions on how to build a Docker
image.. Docker file has no extension and has a specific syntax. Based on docker files we
can build custom images.

Docker Image
Docker image. It is an image for creating Docker Containers. Using one Docker image you
can create multiple containers.

Docker Container

Table of Contents:
⚙ Docker Config Templates
Description
Installation
Basic command
Dockerfile
Docker Volume
Docker Network
Docker Compose

Docker 2

Docker Container. It is a standardized executable components combining application
source code with the operating system OS libraries and dependencies required to run
that code in any environment.

Installation
� Check virtualization enabled. Enable in not enabled

$ sudo lscpu | grep Virtualization

$ full or amd_v

� VPS/VDS

sudo apt install gnome-terminal

� OPTIONAL

sudo apt remove docker-desktop

� Set up the Docker repository:

a� Install required dependencies

$ sudo apt update

$ sudo apt install software-properties-common curl apt-transpo

rt-https ca-certificates -y

b� Once the installation is complete, add Dockerʼs GPG signing key.

$ curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo

c� Next, add the official Dockerʼs repository to your system as follows

$ sudo add-apt-repository "deb [arch=amd64] https://download.doc

� Install docker

$ sudo apt install docker-ce docker-ce-cli containerd.io uidmap -y

� Verify

sudo systemctl status docker

Basic command

Docker 3

Docker version info
Command Description

docker —version Print current docker version

docker info Display detailed docker info

Docker images
Command Description

docker images Print all docker images

docker pull image_name:tag Pull image from the Docker Hub

docker rmi image_name:tag Remove image. (tag is optional)

docker run IMAGE
Run docker image (if no image, install from the
docker server)

docker build -t
image_name:tag Build an image based on the Docker file.

docker attach CONTAINER_ID Attach terminal to the container

CTRLP CTRLQ Detach the container from the terminal

Images exchange
There are 3 main ways to exchange images with other developers:

� Docker HUB. Public or Private Docker Images repositories.

� Exporting and Importing Images to a .tar file. You can save a Docker image as a
file and share it directly with other developers. This method is useful when you
cannot or do not want to use a Docker registry.

� Using Private Docker registers. If you want to share images privately, you can set
up a private Docker registry (e.g., using Docker's own registry image, or a third-
party service like AWS ECR, Google Container Registry, or GitLab Container
Registry).

Docker HUB

Pushing an Image to Docker Hub.

� Tag the Image:

docker tag my_image:latest username/my_image:latest .

� Push the Image to Docker Hub:
docker push username/my_image:latest

Pulling an Image:

� Other developers can pull the Image from Docker Hub using:
docker pull username/my_image:latest

� After pulling, they can run a Container based on the Image:

Docker 4

docket run -it username/my_image:latest

Exporting and Importing Images

� Save Docker Image to a Tar file:
docker save -o my_image.tar my_image:latest

This command creates a tar file (my_image.tar) containing the image and all its
layers.

� To load the Image on another machine use:
docker load -i my_image.tar

Now, developers can run Containers from this Image.

Using private Docker registers

� Setting up a private register:

a� You can run your own private Docker registry by running:
docker run -d 5000:5000 --name registry registry:2

b� Push to the private registry by tagging the image with your registry's address:
docker tag my_image:latest localhost:5000/my_image:latest

docker push localhost:5000/my_image:latest

� Other developers can pull the image using:
docker pull localhost :5000/my_image:latest

Docker Containers
Command Description

docker ps Print running Containers

docker ps -a Print all existing Containers

docker start container_id Start Docker Container

docker stop container_id Stop Docker Container

docker rm container_id Remove Docker Container

docker run image

Run a Container from an Image Flags: -i
Interactive mod, -t TTY, allocates psudo
terminal, -d Detached mode, —name NAME
Gives name to the Container, -p Publish a
Containerʼs port to the host, -v Bind mound
volume).

docker attach CONTAINER_ID Attach the Container to the terminal

CTRLP CTRLQ Detach the Container from the terminal

docker logs CONTAINER_ID View Container logs

docker exec -it
CONTAINER_NAME /bin/sh

Execute command inside of a running Docker
Container

http://localhost/

Docker 5

Docker Networks
Command Description

docker network ls List all Docker Networks

docker network create
NETWORK_NAME Create a new Docker Network

docker network connect
NETWORK_ID CONTAINER_ID Connect a Container to a Network

docker network disconnect
NETWORK_ID CONTAINER_ID Disconnect a Container form a Network

Docker Volumes
Command Network

docker volume ls List Docker Volumes

docker volume create
VOLUME_NAME Create a new Docker Volume

docker volume inspect
VOLUME_NAME Inspect Docker Volume

docker volume rm
VOLUME_NAME Remove Docker Volume

Dockerfile
A Dockerfile typically includes:

� Base Image Start from a base image (e.g., python:3.9).

� Maintainer Information: Optional) Information about the author.

� Environment Variables: Optional) Setting up environment variables.

� Working Directory Set the working directory within the container.

� Dependencies Install the necessary dependencies for your application.

� Copy Files Copy your application code into the container.

� Commands Specify commands to run within the container (e.g., running the
application).

Example Dockerizing Django development server)

Project file structure
Suppose the Django project has following file structure:

my_django_project/

├── Dockerfile

├── requirements.txt

├── manage.py

Docker 6

└── myapp/

 ├── __init__.py

 ├── settings.py

 ├── urls.py

 └── wsgi.py

requirements.txt contains Python dependencies (e.g. Django etc.).

Dockerfile
Here is the sample of the ‘dockerfileʼ for Django development server.

Use the official Python image from the Docker Hub

FROM python:3.9-slim

Set environment variables

ENV PYTHONDONTWRITEBYTECODE 1

ENV PYTHONUNBUFFERED 1

Set the working directory inside the container

WORKDIR /usr/src/app

Copy the requirements file and install the dependencies

COPY requirements.txt /usr/src/app/

RUN python -m venv venv && \

 . venv/bin/activate && \

 pip install --upgrade pip && \

 pip install -r requirements.txt

Copy the rest of the application code

COPY . /usr/src/app/

Expose the port the app runs on

EXPOSE 8000

Command to run the Django development server

CMD ["./venv/bin/python", "manage.py", "runserver", "0.0.0.0:8000"]

Dockerfile explanation:

� Base Image: FROM ‘FROM python:3.9-slim’

a� This is a lightweight version of Python 3.9 image.

� Environment variables:

a� PYTHONDONTWRITEBYTECODE 1 prevents Python from writing .pyc files.

Docker 7

b� PYTHONUNBUFFERED 1 ensures that Python output is sent straight to the terminal
(useful for logging).

� Working directory: WORKDIR /usr/src/app

a� All subsequent commands are run from this directory inside of this Docker
Container.

� Copy and install dependencies:

a� The requirements.txt file is copied into the container, and dependencies are
installed into a Python virtual environment (venv).

� Copy application code:

a� The rest of the project files are copied into the container.

� Expose Port: EXPOSE 8000

a� This inform the host that this Docker Container is listening on port 8000

� CMD command to run the server:

a� The CMD directive runs the Django development server using the Python
interpreter from the virtual environment.

Building Docker Image
Navigate to the directory containing your Dockerfile and run:

docker build -t my_django_project .

Run the Docker Container

docker run -p 8000:8000 my_django_project

The -p 8000:8000 flag maps port 8000 of the container to port 8000 on your host
machine. You should be able to access the Django development server at
http://localhost:8000 .

Additional tips
Debugging You can enter a running container using the following command to debug
issues:

docker exec -it <container_id> /bin/bash

Persistence If you need to persist data (e.g., using a database), consider using Docker
volumes to manage data outside the container.

Docker 8

Docker Volume
Docker Volumes allow us to save Containersʼ data outbound a Containerʼs life cycle.

Volumes can be stores on remote servers or cloud servers.

Definition
A Docker volume is a special directory that's not part of the container's file system. It's
designed to persist data generated and used by Docker containers. This means that even
if a container is removed or restarted, the data within the volume remains intact.

Docker Volume commands
Command Description

docker volume --help Print help message.

docker volume ls Print list of available docker volumes.

docker volume create VOLUME_NAME Create a new Docker Volume.

docker volume inspect VOLUME_NAME Print the volume settings.

docker volume rm VOLUME_NAME Remove a Volume from the host.

docker volume prune Remove unused local volumes.

Mounting volume to a new Container
docker run -d -it --name CONTAINER_NAME -v VOLUME_NAME:path/to/container ubuntu

-d Runs Container in the detached mode)

-it Runs Container in the interactive terminal mode)

—name Optional] Set container name)

-v VOLUME_NAME or PATHPATH_IN_CONTAINER Mounts a volume to the Container)

VOLUME_NAME name of the volume (on the host machine) (PS check docker
volume ls) you want to mount. Or absolute path to the volume on the host machine.

path/in/container Path inside of the Container you want this volume to be
mounted. Can be any path inside of the Container. e.g. /shared-volume

ubuntu Image).

Example:
docker run -d -it --name myUbuntu -v myVolume:/shared-volume ubuntu

You can read this command this way. Run docker container named ‘myUbuntuʼ in the
detached mode, in interactive terminal mode, saving all data inside of Container located in
‘/shared-volume` to myVolume location on the host, based on image ubuntu.

Volume backup

Docker 9

Volume backup into tar.gz

docker run --rm -v your_postgres_volume:/volume -v $(pwd):/backup

Explanation:
docker run --rm This command starts a new container and automatically removes
it once the command inside it finishes executing. The container won't linger
after the backup is complete.

v your_postgres_volume:/volume This mounts the Docker volume named
your_postgres_volume into the container at the /volume path. Docker volumes are
directories on the host system that are managed by Docker to persist data
across container restarts.

v $(pwd):/backup This mounts your current working directory (on the host
machine) into the container at /backup . The $(pwd) command dynamically inserts
the path to your current directory. On Linux/macOS systems, this command
fetches the absolute path of the directory you're in.

alpine This is the base image you're using to run the commands inside the
container. Alpine is a lightweight Linux distribution often used for simple tasks
like this.

tar czf /backup/postgres_backup.tar.gz This creates a compressed archive (tar.gz)
of the contents. Let's break down the tar options:

c Create a new archive.

z Compress the archive using gzip.

f Specifies the filename of the archive (/backup/postgres_backup.tar.gz), which
will be stored in the /backup directory (your current working directory on the
host machine).

C /volume Change to the /volume directory inside the container before starting
the archive process. This is the path where your Docker volume is mounted.

. This means "include everything" in the current directory (which is /volume
after the C /volume argument) in the archive.

In Summary:
This command creates a backup of all the files in the your_postgres_volume volume,
compresses them into a postgres_backup.tar.gz file, and saves it in your current
working directory on the host machine.

Volume transfer
� Using SSH copy:

scp postgres_backup.tar.gz user@new_vps_ip:/path/to/destination/

Volume unpacking

Docker 10

docker volume create your_postgres_volume

docker run --rm -v your_postgres_volume:/volume -v /path/to/desti

1. docker volume create your_postgres_volume :

This creates a new Docker volume called your_postgres_volume . Docker volumes are
used to persist data even when the container stops or is removed.

2. docker run --rm -v your_postgres_volume:/volume -v /path/to/destination:/backup alpine tar
xzf /backup/postgres_backup.tar.gz -C /volume

docker run --rm Same as before, this runs a temporary container that will be
removed after the restore is done.

v your_postgres_volume:/volume Mounts the newly created Docker volume
your_postgres_volume to /volume in the container, where the data will be restored.

v /path/to/destination:/backup Mounts the directory on your host system that
contains the backup file (postgres_backup.tar.gz) to the container's /backup
directory. Replace /path/to/destination with the actual path where your backup
file is stored.

tar xzf /backup/postgres_backup.tar.gz -C /volume :

x Extract files from the archive.

z Decompress the gzip archive.

f Specifies the archive file to extract (/backup/postgres_backup.tar.gz).

C /volume Change to the /volume directory before extracting, so that the
extracted files are restored into the Docker volume.

In Summary:

This command restores the contents of the postgres_backup.tar.gz archive into the
your_postgres_volume volume by extracting the backup files into the volume's
directory.

Docker Network

Definition
Docker Network is a Docker component vital for building networks between Containers
and the host network, and external network.

⚠ Do no use the default bridge for production. Use a user-defined bridge.

What Docker Network Does:
Container Communication Allows containers to communicate with each other,
whether they are on the same host or different hosts.

Isolation By default, Docker containers are isolated from each other. Docker networks
enable controlled communication between containers.

Docker 11

External Access Provides access to the outside world, enabling containers to reach
external services or be accessed from outside the Docker host.

Service Discovery When containers join the same network, they can discover each
other by their container name or service name (in Docker Compose).

Docker Network types:
� Bridge Network: The default network. Containers connected to the same bridge

network are able to communicate between each other but isolated from Containers on
different bridge networks. Default Bridge Networks do not support DNS between
Containers, create custom instead). DNS names are Container names that can be used
inside the Network.

� Host Network: Uses the host machine network. Containers connected to the host
network share the same IP address as the host.

� Overlay Network: Uses for communication between Containers across multiple
Docker hosts is a swarm cluster.

� MACVlan Network: Assigns a MAC address to each container, making them appear as
physical devises on the network.

a� Bridge mode.

b� 802.1q mode. In this mode make able to assign network interfaces to each
Container like enp3s1 and so on.

� IPVLAN:

a� L2 mode (default): The same as MACVlan but the MAC addresses of Container will
match with the host MAC address. Which solves MAC address issue in MACVlan
networks.

b� L3 mode:

� None: Disables networking for a Container. Container has no network interface.

OSI

Docker 12

Docker Network commands

Command

Command Description

docker network create [OPTIONS] NETWORK_NAME Create a new Docker Network.

docket network ls Print list of Docker Networks.

docker inspect NETWORK_NAME Print detailed information about the Network.
docker network connect [OPTIONS] NETWORK_NAME

CONTAINER_NAME Connect Container to a Network.

docker rm NETWORK_NAME Remove Docker Network.

bridge link Show active network bridges on the host.

Flags:
OPTIONS for docker network create :

-driver Specifies the network driver (bridge , overlay , macvlan , etc.).

-subnet Specifies the subnet (e.g., 192.168.1.0/24).

-gateway Specifies the gateway for the network.

Docker 13

-ip-range Specifies a range of IP addresses for containers.

-internal Makes the network internal, preventing external access

OPTIONS for docker network connect NETWORK_NAME CONTAINER_NAME

-ip Assign a specific IP address to the container.

-alias Add a network-scoped alias for the container.

Docket Network Package travel scheme

Configuring Networks inside of docker-compose.yml
Letʼs say we want to configure a Docker Network inside of the docker-compose.yml file.
The docker-compose will cover following services: NGINX, Django, PostgreSQL.

version: '3.8'

services:

 nginx:

 image: nginx:latest

 ports:

 - "80:80"

 volumes:

 - ./nginx.conf:/etc/nginx/nginx.conf

 depends_on:

 - web

 networks:

 - frontend

 - backend

 web:

 image: django:latest

 volumes:

Docker 14

 - .:/app

 depends_on:

 - db

 networks:

 - backend

 db:

 image: postgres:latest

 environment:

 POSTGRES_DB: mydatabase

 POSTGRES_USER: user

 POSTGRES_PASSWORD: password

 networks:

 - backend

networks:

 frontend:

 driver: bridge

 backend:

 driver: bridge

Example of creating a user-defined bridge network
This type of network should be used instead of the default bridge. The whole point of
using a user-defined bridge is to isolate Containers from the default bridge network.
Also a user-defined Network Bridge supports DNS for Containers.

Docker 15

� Create the network:
docker network create NETWORK_NAME

� Run Containers within your Network:
docker run -itd --network NETWORK_NAME --name CONTAINER_NAME IMAGE_NAME

Example of creating MACVlan network

Bridge mode
❗ Make sure your network supports multiple MAC addresses on one port. The issue
is that all Container are connected to the same physical (digital) port on your switch or
router. While some switches or routers cannot assign different MAC addresses to a
single one physical (digital) port).

Try to enable the promiscuous mode on the router.

� Enable promiscuous mode on your host machine.
sudo ip link set enp3s0 promisc on

� Might need to enable the promiscuous mode on the router.

� Create the network
docker network create -d macvlan --subnet 10.7.1.0/24 --gateway 10.7.1.3 -o parent=enp3s0

NETWORK_NAME

Flags:

-d Specify drive. (macvla, bridge, host, etc.).

—subnet Specify your (home) network subnet. ip a enp3s0;

Isolating Containers from the default Network bridge.

Docker 16

—gateway Specify the gateway address Router network).

- o Set options:

parent Set parent network interface. enp3s0;

� Run the Containers within this Network
docker run -itd --name CONTAINER_NAME --network NETWORK_NAME --ip 10.7.0.5 IMAGE_NAME

Specify the Containerʼs IP address manually. Make sure this IP address is free in
your network.

� Check the promiscuous mode if you cannot access other devises on the network.

� Remember this type of network does not have its own DHCP server, thus you have
to assign IP addresses to each Container manually. In case, you do not specify the
IP address manually Docker will use its own DHCP server, this means that there are
two DHCP server on the network which may lead to collisions.

802.1q mode
� Create the network

docker network create -d macvlan --subnet 192.168.20.0/24 --gateway 192.168.20.1 -o

parent= enp3s0.10 NETWORK_NAME

Flags:

-d Specify drive. (macvla, bridge, host, etc.).

—subnet Specify your (home) network subnet. ip a enp3s0;

—gateway Specify the gateway address Router network).

- o Set options:

parent Set parent network interface. enp3s0;

� Run the Containers within this Network
docker run -itd --name CONTAINER_NAME --network NETWORK_NAME --ip 10.7.0.5 IMAGE_NAME

Example of creating IPVLAN network

L2 (default) (PS: L stands for payer of the OSI model)
 1. Create the network

docker network create -d ipvlan --subnet 10.7.1.0/24 --gateway 10.7.1.3 -o parent=enp3s0

NETWORK_NAME

Flags:

-d Specify drive. (macvla, bridge, host, etc.).

—subnet Specify your (home) network subnet. ip a enp3s0;

—gateway Specify the gateway address Router network).

- o Set options:

parent Set parent network interface. enp3s0;

Docker 17

� Run the Containers within this Network
docker run -itd --name CONTAINER_NAME --network NETWORK_NAME --ip 10.7.0.5 IMAGE_NAME

Specify the Containerʼs IP address manually. Make sure this IP address is free in
your network.

Docker Compose
Definition. Docker Compose is a Docker service for defining and running multi-container
applications.

Docker Compose commands

Command Description

docker compose config Validate the docker-compose file

docker compose up
Up docker containers. Flag -d for detached
mode.

docker compose down
Stop every docker container that was upped by
the Compose

docker-compose stop Stop all Containers

docker-compose stat Start all existing Containers

docker-compose restart Restarts all Containers.

docker-compose logs
APPLICATION_NAME

Check Application logs. Useful when
containers were upped in the detached mode.

⚠ Note: docker-compose down will remove all Containers, Networks and Unnamed volumes
with flags -v. Use docker-compose stop for safety.

Docker compose flags

Flag Description Example

-f Specify docker-compose.yml file. docker-compose -f docker-compose.yml up

-e Specify the virtual environment
file.

docker-compose -e .env up

YML files
Docker compose file can be create anywhere on the host. The standard name for this file
is docker-compose.yml

Example of using docker-compose Composing
Django/Gunicorn/Redis/PostgreSQL/NGINX project)

� Crete docker-compose file:

� Validate docker-compose file:

docker-compose config

Docker 18

� Create Dockerfile s for each micro-service

a� NGINX config:

user nginx;

worker_processes auto;

events {

 worker_connections 1024;

}

http {

 log_format main '$remote_addr - $remote_user [$time_loca

 '$status $body_bytes_sent

 "$http_referer" '

 '"$http_user_agent" "$http_x_forwarded_f

 access_log /var/log/nginx/access.log main;

 error_log /var/log/nginx/error.log;

 server {

 listen 80;

 location /static/ {

 root /code/app/static;

 }

 location / {

 proxy_pass http://web:8000;

 proxy_set_header Host $host;

 proxy_set_header X-Real-IP $remote_addr;

 proxy_set_header X-Forwarded-For $proxy_add_x_forw

 }

 }

}

b� NGINX

FROM nginx:alpine

COPY nginx.conf /etc/nginx/nginx.conf

c� Gunicorn:

Docker 19

FROM python:3.9-slim-buster

WORKDIR /code

COPY requirements.txt requirements.txt

RUN pip install -r requirements.txt

COPY . .

CMD ["gunicorn", "--workers", "3", "--bind", ":8000", "app.wsg

d� Postgres

FROM postgres:latest

COPY init-db.sh /docker-entrypoint-initdb.d/

e� Redis:

FROM redis:latest

� Create .env file to store environment variables like database credentials.

� Run docker-compose up -d to start all Containers in detached mode.

Horizontal scales
It is possible to run several Containers for a single service. To do it use docker-compose up -d
--scale radis=4 .

