
📦
Notes: OOP basics
Classes allow us to group out data and functions in a way its is easier to reuse. Attributes - Data
associated with a certain class. Class methods - methods associated with a certain class.

More on GitHub: https://github.com/chabrovs/py/tree/main/RoadMap/OOP/PythonOOPNotes

Theoretical Part:
Classes and Instances

This chapter introduces into Classes and Instances outlining the difference between them and
usage.

A Class

Intro:
A class is a programming language syntax construct that serves as a blueprint (instruction) for
creating (instantiating) objects (instances of a class). Based on a single class it’s possible to create
multiple instances with the same or different data.

In programming, classes allow to model real-world entities, as well as to build relationships between
them utilizing techniques such as association, inheritance, and composition.

The conceptual idea behind classes is to encapsulate data (which is represented as attributes) and
behavior (which is represented by methods) logically related to each other into a single object.

Methods and Attributes:
Attributes:

__name__ — The name of the class.

__module__ — The name of the module in which class is defined.

__class__ — This is the reference to the class’s metaclass, which is type by default.

Notes: OOP basics 1

https://github.com/chabrovs/py/tree/main/RoadMap/OOP/PythonOOPNotes

__doc__ — The class’s docstring.

__bases__ — A tuple containing the base classes form which the class inherits.

__dict__ — A dictionary containing class’s namespace, including it’s attributes and methods.

__mro__ — The Method Resolution Order (MRO), a tuple listing the order in which Python will
search for a method.

__subclasses__ — A list of classes that directly inherit from the class.

Methods:

__init_subclass__(cls) — A hook that is called whenever the class is a subclass of another class.

__new__(cls, *args, **kwargs) — A static method that is called before __init__ to create and return the
new instance. It’s often used for metaclass programming.

__call__(self, *args, **kwargs) — When a class is called to create an instance (e.g., MyClass()), this
method is executed. It, in tern, calls __new__ and then __init__ .

__dir__(self) — Returns a list of class’s attributes and methods for tab-completion and other
introspective tools.

Example:

main.py

class Person:
 def __init__(self, first_name: str, last_name: str, age: int):
 self.first_name = first_name
 self.last_nage = last_name
 self.age = age

Types Of Classes:
1. Abstract Base Class:

it’s a blueprint that cannot be instantiated on its own.

Designed to be a base class for concrete classes, providing a common interface and
possibly some shared functionality.

Python uses the abc.ABC object to define abstract base class.

2. Concrete Class:

It’s a complete and fully implemented class that can be used to instantiate objects.

All its attributes and methods are fully defined and it does not require any further
implementation.

3. Data Class:

It’s a class designed to hold data rather than functionality.

It’s defined by Python’s decorator @dataclass .

An Instance

Intro:
An object is in-memory entity that combines data (state) and behavior (methods). It’s a concrete
instance of a class created during program execution or compilation.

Notes: OOP basics 2

Example:
An object instantiation based on the class:

main.py

class Person:
 def __init__(self, first_name: str, last_name: str, age: int):
 self.first_name = first_name
 self.last_nage = last_name
 self.age = age

if __name__ == "__main__":
 person_1 = Person("Sergei", "Chabrov", 16)

Data Classes

Intro:
A data class is a special type of a class primary purpose of which is to store data. To declare a data
class Python uses the built-in @dataclass decorator.

How it works:
Whenever the @dataclass decorator is used, Python automatically generates several standard special
methods:

1. __init__ — A constructor that accepts arguments for each defined field, initializing the instance
attributes.

2. __repr__ — A method that provides a useful, human-readable string representation of the object,
showing the class name and values of all its fields.

3. __eq__ — A method that allows instances to be compared for equality (==), checking all it field
values are identical.

4. __hash__ — Automatically generates if the class is designed to be immutable (via frozen=True
argument), allowing instances to be used as keys in dictionaries or elements in sets.

Use cases:
To store data object.

The @dataclass decorator parameters:
slots: bool — tells Python not to create __dict__ for instances of the class, but to use __slots__ that

stores instance’s attributes directly in the object’s memory.

Use: when you do not need to add new attributes to the data class after instantiation. When
you want to be more memory efficient. Also, read time a bit faster.

init: bool — generates the __init__ method.

Use: set to False if you want to define your own custom __init__ method, for example, to
perform complex validation or handle arguments differently.

repr: bool — generates the __repr__ method.

Use: set to False if you want to provide custom string representation.

eq: bool — generated the __eq__ method automatically.

Notes: OOP basics 3

Use: set to False if you have a custom logic for comparing instances, or if objects are unique
and should never be considered equal based on field values.

order: bool — if set to True , it generates comparison methods such as __lt__ , __gt__ , __le__ , __ge__ .

Use: when you want to compare instances based on the order of their fields. For example, a
Point class could be ordered by x and then y . Comparison is done lexicographically based

on the order of fields in the class definition.

freeze: bool — When set to True instances of the data class become immutable. This is useful for
creating hashable objects (as __hash__ generated for frozen data classes).

Use: If you need to use the data class instances as keys in a dictionary or elements of a
sets.

unsafe_hash: bool — controls the generation of the __hash__ method. If eq=True and frozen=False , the
__hash__ method is not generated, making the data class unhashable. Setting unsafe_hash=True

forces a __hash__ method to be generated.

Use: You would use unsafe_hash=True to make a mutable data class hashable. This is
considered unsafe because the hash value of a mutable object can change, which can lead
to bugs, as dictionaries and sets rely on a consistent hash value.

Examples:

main.py

from dataclasses import dataclass

@dataclass
class Point3D:
 x: int
 y: int
 z: int

if __name__ == "__main__":
 point1 = Point3D(1, 2, 3)
 print(point1) # STDOUT: Point3D(x=1, y=2, z=3)

Abstract Base Classes

Intro:
An Abstract Base Class (ABC) is a class that cannot be instantiated on its own but serves as a
blueprint for other classes. ABCs can include both fully implemented methods and abstract
methods (methods that have no implementation and must be defined in a subclass). In Python,
ABCs are part of the abc module.

Key Idea: ABCs are used when you want to enforce certain methods or properties in subclasses but
also provide some shared functionality.

Example:

main.py

from abc import ABC, abstractmethod

Notes: OOP basics 4

class Animal(ABC):
 @abstractmethod
 def make_sound(self):
 pass

 def sleep(self):
 print("Sleeping...")

class Dog(Animal):
 def make_sound(self):
 print("Bark!")

class Cat(Animal):
 def make_sound(self):
 print("Meow!")

if __name__ == "__main__":
 # Animal cannot be instantiated
 animal = Animal() # STDERR: TypeError

 dog = Dog()
 dog.make_sound() # STDOUT: Bark!
 dog.sleep() # STDOUT: Sleeping...

 cat = Cat()
 cat.make_sound() # STDOUT: Meow!

Explanation:

In the example above, the Animal is an abstract class, it defines the abstract method make_sound ,
which must be implemented by every subclass. It also provides a concrete method sleep , which is
available to all subclasses. This approach allows to define a common structure while enforcing a
contract for the subclasses to follow.

Attributes: Instance, Class, Static
This chapter outlines clear distinguishment between Instance, Class, and Static attributes within a
class.

Instance attributes:

Intro:
Instance attributes are unique to each object (instance) created from a class. They are defined
inside a class’s methods, most commonly in the __init__ method, using the self keyword which refers
to the particular instance of a class.

Each time a new object is instantiated, it gets its own copy of the instance attributes, and changing
the value of an attribute on one instance does not affect the others.

Instance attributes are stored in the instance’s __dict__ .

Notes: OOP basics 5

Declaration: Typically in the constructor (__init__ method) using self.attribute_name = value .

Scope: Local to the specific object instance.

Access: Accessed via an instance of the class (e.g., my_object.attribute_name).

Use case:
Store data (state) that is unique to each object.

Example:

main.py

class Employee:
 def __init__(self, name: str):
 self.name = name

if __name__ == "__main__":
 employee1 = "Sergei"
 employee2 = "Alex"

 print(employee1.name) # STDOUT: Sergei
 print(employee2.name) # STDOUT: Alex

Class attributes:

Intro:
Class attributes are shared by all instances of a class. They are defined directly in the class body
namespace, outside of any methods. They are a part of the class itself and not tied to any specific
instance. Changes to a class attribute will affect all instances that do not have their own instance
attribute with the same name.

They are stored in the class’s __dict__ .

Declaration: Defined directly within the class body.

Scope: Shared across all instances of the class.

Access: Accessed via the class itself (e.g., Dog.species) or an instance (my_object.species).

Use case:
Data shared among all instances of the same class.

Constants.

Shared configurations.

Tracking state: Managing count reference to all objects created from a class. For example,
_total_connections attribute in a Database class, or _total_users in a User class to track how many

instances were created.

Example:

main.py

Notes: OOP basics 6

class Dog:
 species = "Canis lupus familiaris"

 def __init__(self, name: str):
 self.name = name

if __name__ == "__main__":
 dog1 = Dog("Bubby")
 dog2 = Dog("Lucky")

 print(dog1.species) # STDOUT: Canis lupus familiaris
 print(dog2.species) # STDOUT: Canis lupus familiaris

Static Attributes:

Intro:
A Static attribute is essentially the same as a class attribute in Python. The term “static” comes
from other programming languages like Java, C++, where static members are tied to the class
rather than an instance. In Python, the concept of a “static attribute” is synonymous with a class
attribute.

⚠️ There is no special keyword like static to declare them.

How to reinforce the idea of a static attribute in Python:
To reinforce the idea of a static attribute in Python, it’s possible to declare a class attribute and
declare a static method using the @staticmethod decorator to access the classes attribute.

Use cases:
Same as for class attributes in Python.

Example:

main.py

class Dog:
 species = "Canis lupus familiaris"

 @staticmethod
 def get_species():
 return Dog.species

Methods: Instance, Class, Static
This chapter outlines clear distinguishment between Instance, Class, and Static methods within a
class.

Instance methods:

Intro:
An instance method is a method that operates on an instance of the class and can access and
modify both instance and class attributes. When the instance method is called, the like to the
instance itself is automatically passes as the first argument, conventionally named self .

Notes: OOP basics 7

How it works: When my_object.method() is called, Python automatically passes my_object as the first
self argument.

Purpose: To define the behavior of individual objects.

Access: Can access self (the instance) and self.__class__ (the class).

Use cases:
Modify object’s state.

Access object’s data.

Performing actions on a specific object.

Class methods:

Intro:
A class method operates on the class itself, not on specific instance. It’s defined using the
@classmethod decorator. When a class method is called, Python automatically passes a link to the

class itself as the first argument, conventionally named cls .

How it works: When Class.method() is called, Python automatically passes Class as the first cls
argument.

 Purpose: To define alternative constructors for the class or to work with class-level attributes.

Access: Can access cls (the class) but not self (the instance).

Use cases:
Logic should apply to a class itself, not an individual instance.

Alternative constructors (Factory methods): a class method can be used to create an instance in
a different way rather than the standard __init__ constructor.

Tracking class-wide state.

Accessing class attributes.

Example:

main.py

class Car:
 _total_cars = 0

 def __init__(self, brand):
 self.brand = brand
 Car._tatal_cars += 1

 @classmethod
 def get_total_cars(cls):

 return cls._total_cars

Static methods:

Intro:

Notes: OOP basics 8

A static method operates only with function’s named arguments, and key-word argument. The
@staticmethod decorator changes Python’s default behavior of passing the instance as the first

parameter to the function.

Use cases:
Utility function that are logically grouped with a class but do not need to access to the class or any
instance.

For example:

Helper functions.

Namespace organization: grouping related utility functionality together.

Static validation: a static method can be used to validate input before an object is even created.

Example:

main.py

class User:
 def __init__(self, username: str):
 self.validate_username(username)
 self.username = username

 @staticmethod
 def validate_username(username: str):
 if len(username) < 3:
 raise ValueError(
 f"username.__length__ must be > 3, got {len(username)}"
)

if __name__ == "__main__":
 user = User("ab")
 # STDERR: ValueError: username.__length__ must be > 3, got 2

How it works under the hood:
The @classmethod and @staticmethod decorators are implemented using the descriptor protocol. They
are both non-data descriptors that implement the __get__ method.

When a method decorated with @classmethod or @staticmethod is accessed from a class or an instance,
Python’s descriptor protocol is triggered. The descriptor’s method __get__ called to transform the
function.

1. @classmethod — Its __get__ method takes the class object (cls) ans the function and returns a new
function (a bound method) that automatically passes cls as the first argument.

main.py

class ClassMethod(object):
def __init__(self, f):
 self.f = f

 def __get__(self, instance, owner):

Notes: OOP basics 9

 """
 :Params:
 :``self``: Non-Data Descriptor instance.
 :``instance``: Thefucntion itself.
 :``owner``: The class the fucntion declared in.
 """

 def new_func(*args, **kwargs):
 return self.f(owner, *args, **kwargs)
 return new_func

 def __call__(self, *args, **kwargs):
 return self.f(self, instance, *args, **kwargs)

if __name__ == "__main__":
 class Test:
 def my_class_method(cls):
 print(cls)

 class_method = ClassMethod(my_class_method)

 test = Test()
 test.my_class_method() # STDOUT: <class '__main__.Test'>

2. @staticmethod — Its __get__ method simply returns that original function without any modifications.
It does not bind the function to an instance or a class, which is why it does not receive self or
cls .

main.py

"""
By default, Python passed a link to the object instance.
"""

from typing import Callable

class StaticMethod:
 def __init__(self, f: Callable):
 self.f = f

 def __get__(self, instance, owner):
 return self.f

class Test:
@staticmethod

 def my_static_method(arg1, arg2):
 print(f"arg1={arg1}; arg2={arg2}")

Notes: OOP basics 10

 my_static_method = StaticMethod(my_static_method)

if __name__ == "__main__":
 test = Test()
 test.my_static_method(
 "Hello", "Static"
) # STDOUT: arg1=Hello; arg2=Static

Quick Recall:
instance method — enforces the interpreter to pass the class object instance as the first
parameter to the function. Conventionally, named self . Named, and key-word argument are also
passed after the link to the object instance.

Class method — the @classmethod decorator enforces to pass the class itself as the first parameter
to the function. Conventionally, named cls . Named, and key-word argument are also passed after
the link to the class.

Static method — the @staticmethod decorator enforces to pass only named arguments, and key-word
arguments to the function. Does not use any keywords.

Inheritance
This chapter describes inheritance mechanism in Python.

Introduction:

Definition:
Inheritance is a way to establish an inter-class relationships between multiple classes widely used
in Object-Oriented Programming.

Relationship type — Is-a-type-of :
Inheritance enhances the is-a-type-of relationship between classes. Where a

subclass Is-a-type-of the superclass relationship.

Examples:

An engineer is a type of an employee.

A square is a type of a rectangle.

A cube is a type of a square.

And so on…

Method Resolution Order (MRO):

Into:
Method Resolution Order (MRO) is the order Python looks for methods in a hierarchy of classes. To
determine which method of all method with same name within a class hierarchy to invoke.

Every class has the .__mro__ attribute that allows to inspect the order.

How to Define MRO:

Notes: OOP basics 11

Method Resolution Order (MRO) can be defined by the order in which a subclass inherits from
superclasses.

Also, Method Resolution Order (MRO) can be altered by the super() function parametrization
where the first parameter sets the lower bound of the search and the second parameter tights
the lower bound object and its hierarchy to the subclass the super() function called from.

Example:

main.py

class Rectangle:
 def __init__(self, width: float, height: float):
 self.width = width
 self.height = height

 def area(self) -> float:
 return float(self.width * self.height)

 def perimeter(self) -> float:
 return float(2 * self.width + 2 * self.height)

class Square(Rectangle):
 def __init__(self, length):
 """
 The parametrized `super(Subclass, self)` function == \
 `super()`, is an equivalent of the non-parametrized \
 function.
 """

 super(Square, self).__init__(length, length)

class Triangle:
 def __init__(self, base: float, height: float):
 self.base = base
 self.height = height

 def area(self) -> float:
 return float(self.base * self.height * 0.5)

class RightPyramid(Triangle, Square):
 def __init__(self, base, slant_height):
 self.base = base
 self.slant_height = slant_height
 super().__init__(self.base) # TypeError
 s = super()
 print(type(s))

 def area(self) -> float:

Notes: OOP basics 12

 base_area = super().area()
 perimeter = super().perimeter()

 return float(0.5 * perimeter * self.slant_height + base_area)

if __name__ == "__main__":
 pyramid = RightPyramid(2, 4)
 print(RightPyramid.__mro__)
 print(pyramid.area())
 # Raises a type error as Tragne missing 1 attribute heigth

 class RightPyramid(Square, Triangle):
 def __init__(self, base, slant_height):
 self.base = base
 self.slant_height = slant_height
 super().__init__(self.base) # TypeError
 s = super()
 print(type(s))

 def area(self) -> float:
 base_area = super().area()
 perimeter = super().perimeter()

 return float(0.5 * perimeter * self.slant_height + base_area)

 pyramid = RightPyramid(2, 4)
 print(RightPyramid.__mro__)
 print(pyramid.area())

 # Now MRO point to the Square class first.

C3 Linearization Algorithm:
The C3 Linearization Algorithms is used by Python in MRO. It respects two rules:

1. Children precede their parents.

2. If a class inherits from multiple classes, they are kept in the order specified in the tuple of the
base class.

The algorithm follows these rules:

Inheritance graph determined the structure of the Method Resolution Order.

User have to visit the super class only after the method of the local classes are visited.

Monotonicity.

The super() function:

Intro:
The super() method is a Python built-in function that is used inside a subclass's constructor (__init__())
to access the superclass's attributes and methods.

Notes: OOP basics 13

The super() function returns a temporary instance of the superclass, which allows to access its
attributes and method within a subclass.

The super() function in Single Inheritance:
Example:

main.py

class Rectangle:
 def __init__(self, height: float, width: float):
 self.width = width
 self.height = height

 def calculate_area(self) -> float:
 return float(self.width * self.height)

 def calculate_perimeter(self) -> float:
 return float(2 * self.width + 2 * self.height)

class Square(Rectangle):
 """
 In this subclass we do not have to write \
 calculate_area and calculate_perimeter methods \
 as we can use Rectengle's methods can satisfy our goals.
 """

 def __init__(self, length: float):
 super().__init__(length, length)

class Cube(Square):
 def __init__(self, length: float):
 super().__init__(length)

 def calculate_volume(self) -> float:
 return float(self.calculate_area() * self.length)

 def calculate_surface_area(self) -> float:
 return float(self.calculate_area() * 6)

Parameters for super(SuperClass, self) :
The super() method essentially takes two parameters:

1. Is the superclass.

2. An instance of the first argument (self).

Why? and How it Works?:

This can be used to alter Method Resolution Order (MRO) for a subclass’s instance. In default
behavior (when parameters to the super() method are not provided), the MRO for a subclass
instance behaves following way — …

Notes: OOP basics 14

Note: If the first parameter of the super() function matches the superclass, and the second
parameter is self — it’s an equivalent of a parameterless call of the super() function.

Example:

class A:
 def method(self):
 ...

class B(A):
 # here we override the method form class A
 def method(self):
 ...

class C(B):
 def method(self):

 # But still call method from class A
 super(B, self).method()

The super() function in Multiple inheritance:
Note:

Designing class that use multiple inheritance it’s important to exclude same signatures in
separate classes. As it can confuse the MRO mechanism so far as the first signature matched to
be invoked.

Example of Cooperative Inheritance:

"""
This module shows how to use the `super()` function \
 in multiple inheritance.
An example of Cooperative Inheritance.
"""

class Shape:
 def __init__(self, **kwargs):
 # Call 'object's' init.
 super().__init__(**kwargs)

class Rectangle:
 def __init__(self, width: float, length: float, **kwargs):
 self.width = width
 self.length = length
 super().__init__(**kwargs)

 def area(self) -> float:
 return float(self.width * self.length)

 def perimeter(self) -> float:
 return float(2 * self.length + 2 * self.width)

Notes: OOP basics 15

class Square(Rectangle):
 def __init__(self, length: float, **kwargs):
 super(Square, self).__init__(
 width=length, length=length, **kwargs
)

class Triangle(Shape):
 def __init__(self, base: float, height: float, **kwargs):
 self.base = base
 self.height = height
 super().__init__(**kwargs)

 def tri_area(self) -> float:
 return float(0.5 * self.base * self.height)

class RightPyramid(Square, Triangle):
 def __init__(self, base: float, slant_length: float, **kwargs):
 self.base = base
 self.slant_length = slant_length
 kwargs["height"] = slant_length
 kwargs["length"] = base
 super(RightPyramid, self).__init__(base=base, **kwargs)

 def area(self) -> float:
 base_area = super(RightPyramid, self).area()
 perimeter = super(RightPyramid, self).perimeter()

 return float(0.5 * perimeter * self.slant_length + base_area)

 def area_2(self) -> float:
 base_area = super(RightPyramid, self).area()
 triangle_area = super(RightPyramid, self).tri_area()

 return float(triangle_area * 4 + base_area)

if __name__ == "__main__":
 right_pyramid = RightPyramid(2, 4)
 print(right_pyramid.area())
 print(right_pyramid.area_2())

In this Example:

Class Named Argument kwags

Shape None {}

Rectangle width, length {”base”: 2, “height: 4”}

Square length {”base”: 2, “height: 4”}

Notes: OOP basics 16

Triangle base, height {}

RightPyramid base, slant_height {”length”: 2, “height: 4”}

Design Patterns Using Inheritance

Intro:
Python allows to to make up different design patterns base on rather single inheritance and multiple
inheritance(MI). There are three common design patterns using inheritance.

1. Classical / Regular Inheritance (Single)
Inherits only from one parent.

2. Cooperative Inheritance
This design pattern used to manege the complexity of multiple inheritance(MI).

It requires all classes to explicitly call the super() function.

It ensures that all parent classes in the Method Resolution Order (MRO) are properly initialized
and that shared methods ere executed collaboratively without conflicts and redundancy.

It allows a single call to super().__init__() in a child class to correctly initialize all its parents, even
those parents are siblings in the hierarchy.

It’s often achieved by:

Introducing an abstract class (like Python’s object) that has an empty __init__() method.

Ensuring each class constructor in the class hierarchy calls the super().__init__(**kwargs) function.

Accepting key-word arguments **kwargs in every constructor within the class hierarchy.

Obeying naming conventions where each argument name (including named argument and
key-word argument) should be unique to avoid argument misapplication and AttributeError and
TypeError .

In the child class additional key-word argument can be set before calling the
super().__init__(**kwargs) function.

3. Mix-In Inheritance
This design pattern leverages multiple inheritance(MI) to share functional behavior.

A Mix-In class is not instantiated alone; it provides a set of reusable methods (like loading JSON
serialization capabilities).

Mix-In inheritance follows the has-a pattern. Where a subclass has some functionality from the
superclass (Mix-In in our case).

This pattern helps to achieve composition over inheritance by separating core identity from
added functionality.

Composition & Aggregation
This chapter describes alternative ways to build assassination between Python classes.

Composition

Intro:
Composition is a concept that is used to establish relationships between object.

Notes: OOP basics 17

Relationship type — has-a :
Composite has-a Component.

Often referred as strong has-a relationship.

Example:
A Car has an Engine , and the Car cannot function and exist without an engine.

main.py

class Engine:
 def __init__(self):
 self.type = "V9"

class Car:
 def __init__(self):
 self.engine = Engine()

if __name__ == "__main__":
 car = Car()

Aggregation

Intro:
Aggregation is a form of composition where dependent objects (components) are instantiated
outside of the composite class and then ready-to-use are injected.

Leverage Dependency Injection techniques to achieve aggregation.

Relationship type — has-a :
Often referred as weak has-a relationship.

Examples:
Example #1:

A Department has Professor s, but Professors can exist independently of a department. This example
leverages dependency injection(DI) through the setter method, which allows to inject dependent
objects in the runtime.

main.py

class Professor:
 def __init__(self, name: str):
 self.name = name

class Department:
 def __init__(self, name: str):
 self.name = name
 self.professor_list = []

Notes: OOP basics 18

 def assign_professor(self, professor: Professor) -> None:
 self.professor_list.append(professor)

if __name__ == "__main__":
 professor1 = Professor("Sergei")
 professor2 = Prodessor("Chabrov")

 department = Department("Computer Science")

 department.assign_professor(professor1)
 department.assing_prodessor(professor2)

Example #2:

main.py

class DatabaseConneciton:
 def __init__(self):
 ...
 def execute_sql(self, statemnt: str):
 ...

class Logger:
 def __init__(self, db: DatabaseConnection):
 self.db = db

 def log_to_db(self, log_message: str):
 self.db.execute_sql(
 f"INSERT INTO log_table (messages) VALUES log_message"
)

if __name__ == "__main__":
 db_conn = DatabaesConnection()
 logger = Logger(db=db_conn)
 logger.log_to_db("Hello DI")

Composition vs. Aggregation

Intro:
The key different between composition and aggregation lies in dependent objects (components)
lifespans.

Composition — dependent objects (components) are destroyed after the composite object is
freed from the memory.

Aggregation — dependent object (components) are still alive in the memory even after the
composite object is freed.

Difference in Implementation:
Composition — to achieve composition dependent objects (components) are instantiated within
the composite’s class constructor.

Notes: OOP basics 19

Aggregation — to achieve aggregation dependent objects (components) must be injected into
composite’s constructor using dependency injection (DI) techniques. This allows dependent
object to remain in the memory even after the composite object is freed.

Special (magic/dunder) Methods
This chapter describes what methods stand behind Python regular syntax, including keywords.

Description

Intro:
Special/Magic/Dunder Methods are Python’s built-in method every Python object has.

They are not meant to be called manually.

They are invoked automatically by Python interpreter in response to certain actions operations
and syntax.

They serve as underlying mechanism for operation overloading, attribute access, object
representation, and many more.

Standard Attributes of an Instance

Standard Attributes:
__class__ : A reference to the class from which the object was instantiated.

__dict__ : A dictionary that stores the instance's attributes. This is where all attributes assigned to
the object (e.g., a.x = 10) are stored.

__doc__ : The docstring of the class.

__module__ : The name of the module in which the class is defined.

__weakref__ : A special attribute that allows weak references to be made to the object.

Standard Methods of an Instance

Standard Methods:
__init__(self, *args, **kwargs) : The constructor method. It's automatically called when a new instance is

created. It initializes the instance's attributes.

__new__(cls, *args, **kwargs) : This method is called before __init__ and is responsible for creating and
returning the new object instance.

__del__(self) : The destructor method. It's called when an object's reference count drops to zero,
and it is about to be garbage collected.

__str__(self) : Returns a human-readable string representation of the object.

__repr__(self) : Returns an "official" string representation of the object. It should be a valid Python
expression that could be used to recreate the object.

__eq__(self, other) : Compares two objects for equality (==).

__hash__(self) : Returns a hash value for the object, allowing it to be used as a key in a dictionary or
an element in a set.

__dir__(self) : Returns a list of the object's attributes and methods.

__getattribute__(self, name) : Called for every attribute access, allowing you to intercept and customize
how attributes are retrieved.

Notes: OOP basics 20

__setattr__(self, name, value) : Called when an attribute is assigned a value, allowing you to intercept and
customize how attributes are set.

__delattr__(self, name) : Called when an attribute is deleted, allowing you to intercept and customize
how attributes are deleted.

Descriptor Protocol (setter, getter, deleter)
This chapter explains how to convert a method into an attribute and customize its reading and
modification behavior.

Descriptor Protocol

Intro:
A descriptor is an object that implements one of these three dunder methods __get__ , __set__ ,
__delete__ . When a descriptor is assigned as a class-level attribute, Python automatically invokes the

appropriate dunder method of the descriptor object to handle operations on attributes.

⚠️ The Descriptor Protocol works only when a descriptor object is an attribute of another class. If
used in the __init__ it’ll behave as a regular object.

Think of Descriptors:
Instead of a simple variable, a descriptor acts as a smart variable of a proxy. When descriptor
object is assigned as a class attribute, any operation on that attribute (like instance.access or
instance.attribute = value) is not a direct interaction with a variable. Instead, Python intercepts the

operation and delegates it to the descriptor’s specific methods, which contain the logic for
managing the attribute.

Without Descriptor: my_car.color directly accesses the value “red” stored in memory.

With Descriptors: my_car.color triggers a function call to descriptor’s __get__ method, which might
check a database, validate a value, or perform a calculation before returning the color.

Use Cases:
Descriptors are powerful tool for managing attribute access.

Data Validation and Type Checking: A descriptor can enforce rules on the type and value of an
attribute when it’s set. For example, ensure that “price” attribute is a positive number, or “email”
attribute is a valid email address. This presents invalid data assigned to an object.

Lazy Loading: The first time attribute is accessed, the descriptor’s __get__ method performs the
expensive operation, and cached the result to be returned for subsequent get calls.

Creating Managed Attributes:

Object-Relational Mappers (ORMs): Descriptors are the foundation of many ORMs like
SQLAlchemy. They are used to map a Python class attributes to a column in a database table.
For example, when user.username is accessed descriptor handles the logic of querying the
database to retrieve the corresponding value.

The @property Decorator: The most common used of descriptors. It is a Python built-in
decorators that facilitates creation of getters, setters, and deleters for an attribute.

@classmethod and @staticmethod : Built-in decorators are also implemented using the descriptor
protocol. They modify how a functions is called, allowing to receive the class itself (classmethod)
or nothing but its arguments (staticmethod).

Descriptor Methods:

Notes: OOP basics 21

Or simple descriptors:

1. __get__(self, instance, owner) — Called when an attribute is accessed (e.g., obj.attr).

self — The descriptor instance itself.

instance — The object on which the attribute was accessed (e.g., obj). It’s None when
accessed via the class.

owner — The class to which the descriptor is attached (e.g., OwnerClass).

2. __set__(self, instance, value) — Called when an attributes is assigned a value (e.g., obj.attr = value).

self — The descriptor instance.

instance — The object on which the assignment was made.

value — The value being assigned.

3. __delete__(self, instance) — Called when an attribute is deleted (e.g., del obj.attr).

self — The descriptor instance.

instance — The object on which the deletion was made.

Types of Descriptors:
1. Data Descriptors: A descriptor that implements either the __set__ or __delete__ method (or both).

Because they have logic for writing or deleting an attribute, they are considered "data"
descriptors.

2. Non-Data Descriptors: A descriptor that only implements the __get__ method. It does not have
logic for setting or deleting the attribute.

Non-Data Descriptors

Intro:
A Non-Data Descriptor is a descriptor that implements only __get__ method. Note that descriptors
van only be used as a class-attributes.

Non-Data Descriptors have the same priority as class attributes.

Can be used only to read data from some attribute.

Syntax:
Example #1:

If a class does not have __init__ implemented it cannot be instantiated, thus __get__ 's instance is None .

main.py

#========================
Descriptior declaration
#========================
class MyDescriptor:
 def __get__(self, instance, owner) -> str:
 return instance.__dict__["some_attr"]

#=================
Usage
#=================

Notes: OOP basics 22

class MyClass:
 class_attr = MyDescriptior()

if __name__ == "__main__":
 my_class = MyClass()
 my_class.class_attr # STDERR: `KeyError`

main.py

#========================
Descriptior declaration
#========================
class MyDescriptor:
 def __get__(self, instance, owner) -> str:
 return instance.__dict__["some_attr"]

#=================
Usage
#=================

class MyClass:
 class_attr = MyDescriptior()

 def __init__(self):
 self.some_var = "World"

if __name__ == "__main__":
 my_class = MyClass()
 my_class.class_attr # STDOUT: "World"

main.py

#========================
Descriptior declaration
#========================
class MyDescriptor:
 def __get__(self, instance, owner) -> str:
 return owner.__dict__["some_attr"]

#=================
Usage
#=================

class MyClass:
 class_attr = MyDescriptior()

 some_var = "Hello"

Notes: OOP basics 23

if __name__ == "__main__":
 my_class = MyClass()
 my_class.class_attr # STDOUT: "Hello"

Example #2:

main.py

class ReadIntX:
 """
 Non-Data Descriptor.
 """

 def __set_name__(self, instance, name):
 self.name = "_x"

 def __get__(self, instance, owner):
 return getattr(instance, self.name)

class Integer:
 def __set_name__(self, owner, name: str):
 self.name = "_" + name

 def __get__(self, instance, owner):
 """
 This is the getter method which defines get behavior for the \
 Descriptor object.

 :Params:
 :``self``: Instance of the Descriptor class itself. \
 (Integer in our case).
 :``instance``: A link to the instance of a class the \
 Descriptor is instantiated in.
 (Point3D() or `point` in our case).
 :``owner``: A link to the class that the Descriptor is \
 instantiated in. (Point3D in our case).
 """

 print(f"__get__:{self.name}")

 return getattr(instance, self.name)

def __set__(self, instance, value: int):
 """

 This is the setter method which defines the set attribute \
 behavior for the Descriptor object.

 :Params:
 :``self``: Instance of the Descriptor class itself.\
 (Integer in our case).

Notes: OOP basics 24

 :``instance``: A link to the instance of a class the Descriptor \
 is stantiated in. (Point3D() or `point` in our case).
 :``value``: The value to be set for the Descriptor object.
 """

 print(f"__set__:{self.name}={value}"
 self.validate_coord(value)
 setatter(instance, self.name, value)

def __delete__(self, instance):

 """
 This is the deleter method which define the behavior for \
 the 'del' operation.

 :Params:
 :``self``: Instance of the Descriptor class itself.\
 (Integer in our case).
 :``instance``: A link to the instance of a class the Descriptor \
 is instantiated in. (Point3D() or `point` in our case).
 """

 print(f"__delete__:{self.name}")
 delattr(instance, self.name

@classmethod
def validate_coord(cls, coord: int) -> None:

if type(coord) != int:
 raise ValueError(
 f"Attr must be <class: int>, got {type(coord)}"
)

class Point3D:
 x = Integer() # Data Descriptor
 y = Integer() # Data Descriptor
 z = integer() # Data Descriptor
 rx = ReadIntX() # Non-Data Descriptor

 def __init__(self, x: int, y: int, z: int):
 self.x = x
 self.y = y
 self.z = z

if __name__ == "__main__"
 point = Point3D(1, 2, 3)
 print(point.rx) # STDOUT: 1
 del point.x
 point.__dict__() # STDOUT: {'_y': 2, '_z': 3}

Data Descriptors

Notes: OOP basics 25

Into:
A Data Descriptor is a descriptor that implement one of these methods __set__ , __delete__ in addition
to the __get__ method. Thus, allowing to set and delete data.

Syntax:
Example #1:

In this example, the setter and getter functionality relies directly on the __dict__ attribute which
provides an access to object’s namespace, accordingly, it’s possible mange an object’s namespace
using this attribute. And, the __set_name__() method that is invoked automatically every time an object
is being instantiated, used to set a named attribute.

Task:

Write a class that models a point in 3-D space.

Each point has three coordinates: x, y, z.

Every coordinated must be an integer, if not raise the ValueError .

main.py

class Integer:
 def __set_name__(self, owner, name: str):
 self.name = "_" + name

 def __get__(self, instance, owner):
 """
 This is the getter method which defines get behavior for the \
 Descriptor object.

 :Params:
 :``self``: Instance of the Descriptor class itself. \
 (Integer in our case).
 :``instance``: A link to the instance of a class the \
 Descriptor is instantiated in.
 (Point3D() or `point` in our case).
 :``owner``: A link to the class that the Descriptor is \
 instantiated in. (Point3D in our case).
 """

 print(f"__get__:{self.name}")

 return instance.__dict__[self.name]

def __set__(self, instance, value: int):
 """

 This is the setter method which defines the set attribute \
 behavior for the Descriptor object.

 :Params:
 :``self``: Instance of the Descriptor class itself.\
 (Integer in our case).
 :``instance``: A link to the instance of a class the Descriptor \

Notes: OOP basics 26

 is stantiated in. (Point3D() or `point` in our case).
 :``value``: The value to be set for the Descriptor object.
 """

 print(f"__set__:{self.name}={value}"
 self.validate_coord(value)
 instance.__dict__[self.name] = value

@classmethod
def validate_coord(cls, coord: int) -> None:

if type(coord) != int:
 raise ValueError(
 f"Attr must be <class: int>, got {type(coord)}"
)

class Point3D:
 x = Integer()
 y = Integer()
 z = integer()

 def __init__(self, x: int, y: int, z: int):
 self.x = x
 self.y = y
 self.z = z

if __name__ == "__main__"
 point = Point3D(1, 2, 3)
 point.__dict__() # STDOUT: {'_x': 1, '_y': 2, '_z': 3}

 # ============================
 point = Point3D(1.1, 2.2, 3.3)
 # The `ValueError` due to the validation failure.
 point.x = 12.
 # Also, `ValueError` due to the validation failure.
 # ============================

Example #2:

In this example, the setter and getter methods rely on the Python’s built-in setattr() , getattr() , and
delattr() method. These methods provide a robust interface to manage an object’s namespace (i.e.
obj.__dict__).

main.py

class Integer:
 def __set_name__(self, owner, name: str):
 self.name = "_" + name

 def __get__(self, instance, owner):
 """

Notes: OOP basics 27

 This is the getter method which defines get behavior for the \
 Descriptor object.

 :Params:
 :``self``: Instance of the Descriptor class itself. \
 (Integer in our case).
 :``instance``: A link to the instance of a class the \
 Descriptor is instantiated in.
 (Point3D() or `point` in our case).
 :``owner``: A link to the class that the Descriptor is \
 instantiated in. (Point3D in our case).
 """

 print(f"__get__:{self.name}")

 return getattr(instance, self.name)

def __set__(self, instance, value: int):
 """

 This is the setter method which defines the set attribute \
 behavior for the Descriptor object.

 :Params:
 :``self``: Instance of the Descriptor class itself.\
 (Integer in our case).
 :``instance``: A link to the instance of a class the Descriptor \
 is stantiated in. (Point3D() or `point` in our case).
 :``value``: The value to be set for the Descriptor object.
 """

 print(f"__set__:{self.name}={value}"
 self.validate_coord(value)
 setatter(instance, self.name, value)

def __delete__(self, instance):

 """
 This is the deleter method which define the behavior for \
 the 'del' operation.

 :Params:
 :``self``: Instance of the Descriptor class itself.\
 (Integer in our case).
 :``instance``: A link to the instance of a class the Descriptor \
 is instantiated in. (Point3D() or `point` in our case).
 """

 print(f"__delete__:{self.name}")
 delattr(instance, self.name

@classmethod
def validate_coord(cls, coord: int) -> None:

Notes: OOP basics 28

if type(coord) != int:
 raise ValueError(
 f"Attr must be <class: int>, got {type(coord)}"
)

class Point3D:
 x = Integer()
 y = Integer()
 z = integer()

 def __init__(self, x: int, y: int, z: int):
 self.x = x
 self.y = y
 self.z = z

if __name__ == "__main__"
 point = Point3D(1, 2, 3)
 del point.x
 point.__dict__() # STDOUT: {'_y': 2, '_z': 3}

The Precedence Rule and MRO

Intro:
The Precedence Rule is fundamental to how Python works. When you access an attribute (obj.attr1),
Python follows this order.

1. Lookup for attr1 in the class’s __dict__ and see if it’s a data descriptor. If so, use it’s __get__ method.

2. Lookup for attr1 in object’s (instance’s) __dict__ . If exits, use that value.

3. Look for attr1 in the class’s __dict__ and see if it’s non-data descriptor. If so, use its __get__ method.

4. If none of these above are found, for for attr in the class’s base classes (following the MRO).

The Precedence Rule.

(High-priority)
^

1 | |-- Class.__dict__ (data descriptor)
| |

2 | |-- Instance.__dict__ (instance attributes)
| |

3 | |-- Class.__dict__ (non-data descriptor)
| |

4 | |-- Class.__mro__ (standart class attrs)
|

(Low-Priority)

Class.__dict__ (data-descriptor) → instance.__dict__ → Class.__dict__ (non-data descriptor) → Class.__mro__
(standard MRO).

Property Decorator (@property):

Notes: OOP basics 29

Intro:
The @property decorator is Python’s built-in decorator that servers to facilitate usage of the
descriptor protocol. This decorator becomes in handy when a class does not have much attributes.

Semantics:
The @property decorator takes a method and turns it into a special kind of attribute. Under the hood,
the decorator creates a data descriptor instance. This data descriptor has automatically
implemented __get__ , __set__ , and __delete__ methods.

Examples:

main.py

"""
This module show how to use the `@property` decorator.

The `@property` decorator is a high-level API Python provides for the \
 Descriptor Protocol.

It allows to:
 - Turn methods into a special kind of an attribute.
 - Create Setter and Getter without utilizing special methods.
"""

from decimal import Decimal

class Employee:
 def __init__(self, first_name: str, last_name: str, salary: Decimal):
 self.first_name = first_name
 self.last_name = last_name
 self.salary = salary

 @property
 def full_name(self) -> str:
 return "{} {}".format(
 self.first_name.capitalize(),
 self.last_name.capitalize()
)

 @full_name.setter
 def full_name(self, full_name: str):
 first_name, last_name = full_name.split()

 self.first_name = first_name.capitalize()
 self.last_name = last_name.capitalize()

 @full_name.deleter
 def full_name(self):
 """

Notes: OOP basics 30

 This deleter forbids to delete Employee's name.
 """

 raise ValueError("Required Fields Cannot be Deleted")

 @property
 def email(self):
 if not "_email" in self.__dict__:
 self._email = "{}-{}@mail.com".format(
 self.first_name,
 self.last_name
)
 return self._email

 return self._email

 @email.setter
 def email(self, *args, **kwargs):
 if args or kwargs:
 self.email = None
 return

 self.email = "{}-{}@mail.com".format(
 self.first_name,
 self.last_name
)

 @email.deleter
 def email(self):
 self._email = None

if __name__ == "__main__":
 employee = Employee("sergei", "chabrov", 1_000_000)
 employee.full_name = "sergei2 chabrov"
 print(employee.full_name) # STDOUT: Sergei2 Chabrov
 print(employee.email) # STDOUT: Sergei2-Chabrov@mail.com
 del employee.email
 print(employee.email) # STDOUT: None
 print(employee.__dict__) # STDOUT: {
 # 'first_name': 'Sergei2',
 # 'last_name': 'Chabrov',
 # 'salary': 1000000,
 # '_email': None
 # }

The same but using the Descriptor Protocol:

main.py

from decimal import Decimal

Notes: OOP basics 31

class FullName:
 def __set_name__(self, instance, name):
 self.name = "_" + name

 def __get__(self, instance, owner):
 if instance:
 return getattr(instance, self.name)

 return getattr(owner, self.name)

 def __set__(self, instance, value: str):
 first_name, last_name = value.split()
 first_name = first_name.capitalize()
 last_name = last_name.capitalize()

 setattr(instance, "_first_name", first_name)
 setattr(instance, "_last_name", last_name)
 setattr(instance, "_full_name", "{} {}".format(
 first_name, last_name
))

 def __delete__(self, instance):
 raise ValueError("Required Fields Cannot be Deleted")

class Email:
 def __set_name__(self, instance, name):
 self.name = "_" + name

 def __get__(self, instance, owner):
 if instance:
 return instance.__dict__[self.name]

 return owner.__dict__[self.name]

 def __set__(self, instance, value):
 email = "{}-{}@mail.com".format(
 instance.__dict__["_first_name"],
 instance.__dict__["_last_name"]
)
 instance.__dict__[self.name] = email

 def __delete__(self, instance):
 if instance.__dict__[self.name]:
 instance.__dict__[self.name] = None

class Employee:
 full_name = FullName()

Notes: OOP basics 32

 email = Email()

 def __init__(self, first_name: str, last_name: str, salary: Decimal):
 self.first_name = first_name
 self.last_name = last_name
 self.salary = salary
 self.full_name = "{} {}".format(first_name, last_name)
 self.email = "123" # The value won't be used.

if __name__ == "__main__":
 employee = Employee("sergei", "Chabrov", 1_000_000)
 print(employee.first_name) # STDOUT: sergei
 print(employee.full_name) # STDOUT: Sergei Chabrov
 print(employee.email) # STDOUT: Sergei-Chabrov@mail.com
 del employee.email
 print(employee.email) # STDOUT: None
 print(employee.__dict__) # STDOUT: {
 # 'first_name': 'sergei',
 # 'last_name': 'Chabrov',
 # 'salary': 1000000,
 # '_first_name': 'Sergei',
 # '_last_name': 'Chabrov',
 # '_full_name': 'Sergei Chabrov',
 # '_email': None
 # }

More Examples:
Inheritance

Definition and examples
Inheritance allows a class to inherit attributes and methods form another class.

It is useful because we can:

1. Make subclasses and get all the functionality of the parent class.

2. Overwrite and add completely functionality without effecting the parent class and its instances.

Example:

Let’s say that we want to create a new specific class of Employee. E.g.: Developers and Managers.

class Employee:
 pay_raise = 1.04

 def __init__(self, first, last, pay) -> None:
 self.first = first
 self.last = last
 self.pay = pay
 self.email = "{}.{}@mai.com".format(self.first, self.last)

Notes: OOP basics 33

 def raise_pay(self) -> None:
 self.pay = int(self.pay * self.pay_raise)

class Developer(Employee):
 pass

Method Resolution Order (MRO)
Method resolution order is the order in which the interpreter looks for attributes and methods before
accessing them. Methods and attributes with the same names can be prioritized by the resolution
order.

print(help(Developer))

Using methods resolution order, we can overwrite class attribute and methods for each subclass. And
they will be valid only for this subclass.

Example:

Let’s say we want to change the pay_raise attribute only for the Developers up to 100 %.

class Developer(Employee):
 pay_raise = 2 # Attribute overwriting for the subclass.
 pass

dev_1 = Developer('Corn', 'Boob', 30000)
print(dev_1.pay) # Stdout: 30000
dev_1.raise_pay()
print(dev_1.pay) # Stdout: 60000

dev_1 = Employee('Corn', 'Boob', 30000)
print(dev_1.pay) # Stdout: 30000
dev_1.raise_pay()
print(dev_1.pay) # Stdout: 31200

Extending child instance’s attributes
We can enrich the child class instances functionality by adding new instance attribute to the child’s
__init__ method. We can access the parent instances attributes and methods without copying the code
form the parent class.

Example:

class Developer(Employee):
 pay_raise = 2

 def __init__(self, first, last, pay, prog_lang) -> None:
 super().__init__(first, last, pay) # Same as: Employee.__init__(self, first, last, pay)
 # Line above passes arguments into the parent class's __init__ method,
 # meanwhile, the child's __init__ just extend Developer's instance attributes.
 self.prog_lang = prog_lang

Notes: OOP basics 34

dev_1 = Developer('Corn', 'Boob', 30000, 'Python')
print(dev_1.first) # Stdout: 'Corn' | the 'first' attribute is handled by the Employee class.
print(dev_1.prog_lang) # Stdout: 'Python' | the 'prog_lang' attribute is handled by the Developer cla
ss.

class Manager(Employee):
 pay_raise = 1.12

 def __init__(self, first, last, pay, employees=None) -> None:
 super().__init__(first, last, pay)
 if not employees:
 self.employees = []
 else:
 self.employees = employees

 def add_emp(self, emp):
 if emp not in self.employees:
 self.employees.append(emp)

 def rem_emp(self, emp):
 if emp not in self.employees:
 print("No such employee")
 else:
 self.employees.remove(emp)

 def print_employees_names(self):
 for employee in self.employees:
 print(f"Employee: {employee.first} {employee.last} {employee.__class__}")

man_1 = Manager('Raya', 'Abbe', 32000, [dev_1])
print(man_1.print_employees_names())
man_1.rem_emp(dev_1)
print(man_1.employees)

💡 To get the class name fro the class instance. class_instance.__class__.__name__

Isinstance() and issubclass() methods
Instance method will tell us if an object is an instance of the class

Example:

isinstance(dev_1, Employee) #Stdout: True
isinstance(dev_1, Developer) #Stdout: True
isinstance(man_1, Developer) #Stdout: False

Is subclass method will tell us if a subclass of another subclass

Notes: OOP basics 35

Example:

issubclass(Developer, Employee) # Stdout: True
issubclass(Manager, Developer) # Stdout: False

Special (magic/dunder) methods

Definition
A Special (Magic/Dunder) methods are meant to set or change the default behavior of a class.

For example: when we use the ‘+’ symbol on integers, they will be added arithmetically, but if we use
the ‘+’ symbol on strings they will be concatenated by default. As follows, the default behavior is
tighten to an object special methods.

print(str.__add__('a', 'b')) # Stdout: 'ab'
print(int.__add__(1, 2)) # Stdout: 3

Changing standard behavior

class Employee:
 def __init__(self, first, last, pay) -> None:
 self.first = first
 self.last = last
 self.pay = pay
 self.email = "{}.{}@mail.com".format(self.first, self.last)

emp_1 = Employee('John', 'Harries', 20000)
print(emp_1) # Stdout: <__main__.Employee object at 0x7a1bc8657f70>
print(repr(emp_1)) # Stdout: <__main__.Employee object at 0x7258d855bf70>

Change the behavior of the standard print method
class Employee:
 def __init__(self, first, last, pay) -> None:
 self.first = first
 self.last = last
 self.pay = pay
 self.email = "{}.{}@mail.com".format(self.first, self.last)

 def __str__(self) -> str:
 return "{} {}, {}".format(self.first, self.last, self.__class__.__name__)

 def __repr__(self) -> str:
 return "{}('{}', '{}', '{}')".format(self.__class__.__name__, self.first, self.last, self.pay)

 def __add__(self, other: Employee) -> int:
 return int(self.pay + other.pay)

emp_1 = Employee('John', 'Harries', 20000)
emp_2 = Employee('David', 'Baron', 40000)

Notes: OOP basics 36

print(emp_1) # Stdout: "John, Harries, Employee"
print(repr(emp_1)) # Stdout: Employee(John, Harries, 20000)
print(emp_1 + emp_2) # 60000

__repr__ is used to represent tech information. __str__ is used to represent user friendly information.
It is a good practice to return the command the instance was created with for the __repr__ method.

One more example:

class A:
 def __init__(self, a) -> None:
 self.a = a

 # def __eq__(self, value: object) -> bool:
 # Standard behavior is to compare objects bit by bit.

Not operator == will compare length of the instance with the length of a value.
Instead comparing bit by bit values

a = A('hello')
print(a == 'olleh') # False

class A:
 def __init__(self, a) -> None:
 self.a = a

 def __eq__(self, value: object) -> bool:
 # New behavior is to compare lengths of two objects
 return len(self.a) == len(value)

a = A('hello')
print(a == 'olleh') # True

Property decorators, setters, getters, deleters
Property decorators allow to access: setter, getter and deleter functionality. Property decorator allows
to define methods that can be accesses as attributes.

The problem it solves:

class Employee:
 def __init__(self, first, last, pay) -> None:
 self.first = first
 self.last = last
 self.pay = pay
 self.email = "{}.{}@.mail.com".format(first, last)

 def full_name(self) -> str:
 return "{} {}".format(self.first, self.last)

emp_1 = Employee('John', 'Clark', 40000)
print(emp_1.email) # Stdout: John.Clark@.mail.com

Notes: OOP basics 37

emp_1.last = 'Kirov'
print(emp_1.email) # Stdout: John.Clark@.mail.com

As you can see, changing the last name did not lead to the email address change. But let’s suppose,
that we need to change the email address every time the first or last names are changed. We can add a
new instance method that allows us to receive the mail, but it will lead us to the problem where
everyone who uses the Employee class must start using our new method instead if revering referring
to the instance’s attribute ‘email’.

class Employee:
 def __init__(self, first, last, pay) -> None:
 self.first = first
 self.last = last
 self.pay = pay

 def full_name(self) -> str:
 return "{} {}".format(self.first, self.last)

 def email(self) -> str:
 return "{}.{}@.mail.com".format(self.first, self.last)

emp_1 = Employee('John', 'Clark', 40000)
print(emp_1.email()) # Stdout: John.Clark@.mail.com
emp_1.last = 'Kirov'
print(emp_1.email()) # Stdout: John.Kirov@.mail.com

To tackle this problem the property decorated comes in handy.

Property decorator (as getter)
Note: we co not want to refactor every piece of code that refers to the ‘email’ attribute. To achieve the
desired behavior, we can use the @property decorator, which will allow us to refer to the method as we
refer to the attribute.

class Employee:
 def __init__(self, first, last, pay) -> None:
 self.first = first
 self.last = last
 self.pay = pay

 @property
 def full_name(self) -> str:
 return "{} {}".format(self.first, self.last)

 @property
 def email(self) -> str:
 return "{}.{}@.mail.com".format(self.first, self.last)

emp_1 = Employee('John', 'Clark', 40000)
print(emp_1.email) # Stdout: John.Clark@.mail.com

Notes: OOP basics 38

emp_1.last = 'Kirov'
print(emp_1.email) # Stdout: John.Kirov@.mail.com

Note: We do not have to use parentheses when calling the 'email' method.

Setter
Let’s say that, we want to set a new fist and last attributes for our Employee 1 instance. We can do so
manually, or use the setter mechanism.

print(emp_1.full_name) # John Kirov
try:
 emp_1.full_name = 'Alex Ross' # Will raise the AttributeError: can't set attribute 'full_name'
except Exception as e:
 print(e)

Using setter mechanism. In order to make the setter mechanism operational we need to use the
property decorator.

class Employee:
 def __init__(self, first, last, pay) -> None:
 self.first = first
 self.last = last
 self.pay = pay

 @property
 def full_name(self) -> str:
 return "{} {}".format(self.first, self.last)

 # The setter mechanism
 @full_name.setter
 def full_name(self, name: str) -> None:
 first, last = name.split()
 self.first = first
 self.last = last

emp_1 = Employee('John', 'Clark', 40000)
print(emp_1.full_name) # John Kirov
emp_1.full_name = 'Alex Ross' # Will NOT raise any error now.
print(emp_1.full_name)

Deleter
We also can implement the deleter the same way as we did with the setter.

class Employee:
 def __init__(self, first, last, pay) -> None:
 self.first = first
 self.last = last
 self.pay = pay

 @property

Notes: OOP basics 39

 def full_name(self) -> str:
 return "{} {}".format(self.first, self.last)

 # The setter mechanism
 @full_name.deleter
 def full_name(self) -> None:
 self.first = None
 self.last = None

emp_1 = Employee('John', 'Clark', 40000)
print(emp_1.full_name) # Stdout: John Clark
del emp_1.full_name # Deletes the instance of the class
print(emp_1.full_name) # Stdout: None None

Credentials:
1. https://realpython.com/python-super/#:~:text=An Overview of Python's super() Function,-If you

have&text=While the official documentation is,to call that superclass's methods.

2. https://docs.python.org/3/howto/descriptor.html

3. https://www.youtube.com/watch?v=ACqsYPbgePk&ab_channel=selfedu

4. https://github.com/chabrovs/py/tree/main/RoadMap/OOP/descriptors

5. https://github.com/chabrovs/py/tree/main/RoadMap/OOP/descriptor_protocol

Notes: OOP basics 40

https://realpython.com/python-super/#:~:text=An%20Overview%20of%20Python's%20super()%20Function,-If%20you%20have&text=While%20the%20official%20documentation%20is,to%20call%20that%20superclass's%20methods
https://realpython.com/python-super/#:~:text=An%20Overview%20of%20Python's%20super()%20Function,-If%20you%20have&text=While%20the%20official%20documentation%20is,to%20call%20that%20superclass's%20methods
https://realpython.com/python-super/#:~:text=An%20Overview%20of%20Python's%20super()%20Function,-If%20you%20have&text=While%20the%20official%20documentation%20is,to%20call%20that%20superclass's%20methods
https://docs.python.org/3/howto/descriptor.html
https://www.youtube.com/watch?v=ACqsYPbgePk&ab_channel=selfedu
https://github.com/chabrovs/py/tree/main/RoadMap/OOP/descriptors
https://github.com/chabrovs/py/tree/main/RoadMap/OOP/descriptor_protocol

