
Operating systems (OSes) 1

Operating systems (OSes)
Table of contents
Table of contents
Computer system architecture

Introduction
Types of multiprocessor systems

OS design and architecture
Operating system services
Structure of OSes
Kernel

I / O (input / output)
Introduction
I/O Hardware
I/O Software
I/O Buffering

Virtual machines
Fundamental Idea
Implementation
How do virtual machines work
Types of virtual machines

System calls
OS modes (OS spaces) user and kernel
System calls
Types of programs (system & user)

Memory
Main memory (hardware)
Virtual memory

Operating systems (OSes) 2

Segmentation
Pagination
Page replacement algorithms
Page buffering algorithm
Frames allocation
Memory layout of C programs
Process runtime environment

File Systems
File system
Files
Directories
Mounting file systems
Space allocation
File System Drivers

Processes and Threads (Process management)
Processes
Threads
Types of threads
Multithreading models and Hyperthreading
Control Blocks (PCB / TCB)
System calls fork() , exec() .
Thread cancellation

Inter-process communication (IPC)
Introduction
IPC systems
Remote procedure (call) systems
Types (with C examples)

Multiprogramming and Multitasking (time sharing)
Introduction
Components of the OS Scheduler
Task scheduling step-by-step
CPU scheduling
Preemptive (forced) multitasking
Cooperative (voluntary) multitasking
Context switching (dispatching)
Scheduling Criteria
Task scheduling algorithms

Process synchronization
Process synchronization
Critical section
Synchronization mechanisms for space-sharing systems
Classic problems of synchronization

Credits:

Operating systems (OSes) 3

Computer system architecture
Introduction
There are a few types of computer system architecture:

1. Single processor system: One main CPU capable of executing a general purpose
instructions set, including interaction from a user.

2. Multiprocessor systems: also known as parallel or tightly coupled systems. Have two or
more processors in close communication, sharing the computer bus and sometimes the
clock, memory and peripheral devices.

None: General purpose CPU with multiple cores (e.g., one in a PC) can be considered as
multiprocessor systems. it is typically classified as a Symmetric Multiprocessor System.

Types of multiprocessor systems
1. Symmetric
In symmetric systems all cores have equal capabilities (sometimes they are identical) and
access to the same memory and system resources, They can execute any task
independently or cooperatively.

2. Asymmetric
In asymmetric systems cores have different capabilities or responsibilities. E.g., one core
may handle I/O operations while the other computing.

Symmetric multiprocessor system scheme.

Operating systems (OSes) 4

3. Cluster
Like multiprocessor systems clusters are individual systems (not only CPUs) gathered
together. Can be structured symmetrically or asymmetrically.

OS design and architecture
Operating system services
An Operating System provides an environment for programs execution. It also provides
several services to programs and users of these programs.

Services:
1. Command Line Interface (CLI) and Graphical User Interface (GIU).

2. Program execution: the OS must be able to load a program (executable code and data)
into main memory, and run this program.

3. I/O operations: a user cannot control the O/I devices directly. Support drivers.

4. File System Manipulation: the file system is responsible for organizing the disk. Store file
restrictions, files structure, write, delete, update files).

5. Cross process communication: a program that is in execution is a process. Processes may
share data between each other.

6. Error detection, error stdout, error journaling.

Asymmetric multiprocessor system scheme.

Operating systems (OSes) 5

7. Resource allocation: the OS must be able to allocate resources such as CPU time and
memory among all active processes.

8. Protection and Security:

a. Each process must run in isolated environment.

b. One process must not have an ability to brake or access data of another processes.

c. Prevent unauthorized access and record all attempts.

Structure of OSes
Simple (MS DOS)
About: Old MS DOS. It is not a truly layered structure as it exploits access to the hardware
from all layers of programs. Old processors did not such thing as dual-mode, hence
engineers could not implement safe design systems.

Pros:

Easy development.

Better performance.

Cons:

Frequent system failures: If one program fails, entire OS crashes.

Poor maintainability: as all layers of OS are tightly coupled, change in one layer can
impact other layers heavily and making core unmaintainable over a period of time.

Scheme:

Monolithic (early UNIX systems)
About: a central piece of code called kernel is responsible for all major operations of an
OS. Such operations include file management, device management, etc. The kernel is the
main components of an operating system and it provides all services of an OS to the

Simple OS structure scheme.

Operating systems (OSes) 6

system and application programs. The kernel has access to all the resources and acts as
an interface with application programs and the underlying hardware.

Pros:

Easy to implement.

Performance.

Cons:

Crash prone: if one system program or user applications crashes, the kernel remains to
operate.

Difficult to enhance: It is difficult

Scheme:

Layers structure
About: One way to achieve modularity is OSes. The OS is divided into layers each layer is
isolated and responsible for layer-specific tasks only. In this, the bottom layer is the
hardware and the topmost is the user interface.

Pros:

High customizable: a new functionality is added to a certain layer without the need to
change other layers.

Verifiable: each layer can be debugged separately.

Cons:

Less performance.

Monolith OS structure scheme

Operating systems (OSes) 7

Complex designing.

Scheme:

Micro-Kernel
About: Instead of having a large kernel with many functionalities the kernel is kept small,
and all the functionalities are migrated to the user-mode and run as system services.
Hence, the system runs in two modes:

Kernel-mode: responsible for messaging between user applications and hardware.

User-mode: responsible for system services and user applications.

Pros:

Reliable and stable.

Maintainability.

Cons:

Complex to design.

Performance complications.

Scheme:

Layered OS structure scheme.

Operating systems (OSes) 8

Modules
About: A central kernel is responsible for major OS operations. Other functionality is
present in term of modules which are loaded dynamically either at boot time or run time.

Pros:

Customization.

Cons:

Less performance.

Complex design.

Scheme:

Kernel
The OS Kernel is the core component of an operating system that acts as a bridge between
applications and the actual data processing done at the hardware level. It is responsible for
managing the system's resources, providing essential services to other parts of the operating

Micro-kernel OS structure scheme.

Modular OS structure scheme.

Operating systems (OSes) 9

system and applications, and maintaining the separation between user space and kernel
space. Key functions of the kernel include:

Process management: Scheduling and coordinating processes

Memory management: Allocating and deallocating memory for processes

Device management: Controlling and interfacing with hardware devices

File system management: Organizing and maintaining file structures

I/O management: Handling input/output operations

Security and protection: Enforcing access controls and system integrity

The kernel operates in a privileged mode with full access to hardware resources, ensuring
efficient and secure system operation.

Linux Kernel Structure

I / O (input / output)
Introduction

I/O structure
I/O system is organized into a layered structure:

1. User Level Libraries: Provide simple interface to user program to perform input and
output. Example: the stdio library for C and C++.

2. Kernel Level Modules: Provide a device driver to interact with the device controller
and device independent I/O modules used by the device driver.

Linux Kernel and its components scheme

Operating systems (OSes) 10

3. Hardware: Includes the actual hardware and hardware controller with interacts with
the device driver and makes hardware alive.

Key concept
A key concept in the designing of I/O software is that it should be device independent
where it should be possible to write programs that can access any I/O device without
having to specify the device in advance.

Example: a program that reads input file as input should be able to read file on any floppy
disk, on hard disk, or on CD-ROOM, without having to modify the program for each
different device.

I/O operations workflow
1. To start an I/O operation, device driver loads the appropriate registers within the

device controller.

2. The device controller, in tern, examines the contents of these registers to determine
what action to take.

3. The controller starts the data transfer from the device to it’s local buffer.

4. Once the data transfer complete, the device controller informs the device driver via an
interrupt that it has finished the operation.

5. The device driver then returns the control to the OS.

Communication with I/O device scheme:

I/O structure scheme

Operating systems (OSes) 11

I/O Hardware
Block and Char devices

Block device: a device with which the driver communicates by sending entire blocks
of data. (e.g., Hard drives, USB cameras, etc.).

Character devices: a device with which the driver communicates by sending and
receiving single character (bytes, octets). (e.g., serial ports, sound carts, etc.).

Device controllers
Device drivers are software modules that can be plugged into an OS to handle a particular
device.

The device controllers works like an interface between a device and a device driver. I/O
units typically consist of a mechanical component and electronic component where
electronic component is called a device controller.

There is always a device controller and a device driver for each device to communicate
with the OS. A device controller may be able to handle multiple devices. As an interface its
main task is to convert serial bit stream to block of bytes, perform error handling if
necessary.

Any device connected to the computer is connected by a plug and socket, and the socket
is connected to a device controller.

Synchronous & Asynchronous I/O
Synchronous I/O: in this scheme CPU execution waits while I/O processed.

Workflow of I/O operations.

Operating systems (OSes) 12

Asynchronous I/O: I/O processes concurrently with CPU execution.
Communication to I/O devices
The CPU must have a way to pass information to and from I/O device. There is three
approaches available to communicate with the CPU and device.

1. Special Instruction I/O:

Uses CPU instructions are specifically made for controlling I/O devices. These
instructions typically allow data to be sent to an I/O device and read form.

2. Memory-mapped I/O:

The same address space is shared by memory and I/O devices. The device is
connected directly to certain memory locations so that I/O device can transfer
block of data to/from memory without going through CPU.

The OS allocates memory buffer and inform the I/O device to use the buffer so
send data to the CPU. I/O device operates asynchronously with CPU, interrupts
CPU when finished.

Pros:

High speed as every instruction that can access memory can be used to
manipulate the I/O device.

3. Direct memory access (DMA):

Slow I/O devices (e.g., keyboard) generate an interrupt to the CPU after each byte
is transferred. If a fast device would generate an interrupt to the CPU after each
byte is transferred it would cause a CPU overhead, as CPU would need to manage
each interrupt.

Direct memory access allows to read and write to the memory without CPU
involvement. DMA module itself controls exchange of data between main memory
and I/O device. CPU is only involved at the beginning and end of transfer and
interrupted after entire block has been transferred.

Requires a special hardware component called DMA controller (DMAC) that
manages the data transfer and arbitrates across the system bus.

Pooling & interrupting
A computer must have a way of detecting the arrival of any type of input. There are two
ways that this can happen, known as polling and interrupts. Both of these techniques
allow the processor to deal with events that can happen at any time and that are not
related to the process it is currently running.

Pooling: The process of periodically checking status of the device to see if it is time for
the next I/O operation, is called polling. The I/O device simply puts the information in a
Status register, and the processor must come and get the information.

Operating systems (OSes) 13

Interrupts: An interrupt is a signal to the microprocessor from a device that requires
attention. A device controller puts an interrupt signal on the bus when it needs CPU’s
attention when CPU receives an interrupt, It saves its current state and invokes the
appropriate interrupt handler using the interrupt vector (addresses of OS routines to
handle various events). When the interrupting device has been dealt with, the CPU
continues with its original task as if it had never been interrupted.

I/O Software
Device drivers
Device drivers are software modules that can be plugged into an OS to handle a particular
device. OS takes help from device drivers to handle I/O devices. Device drivers
encapsulate device-dependent code and implement a standard interface in such way the
code contains device-specific register reads/writes. Device driver, is generally written by
the device’s manufacturer and delivered along with the device.

Device driver performs following tasks:

1. Accept request fro the device independent software above it.

2. Interact with the device controller to take and give I/O and perform required error
handling.

3. Making sure that requests are executed successfully.

Interrupt handlers
An interrupt handler or interrupt service routine (ISR), it is a piece of software or more
specifically a callback function in an OS or more specifically in a device driver, whose
execution is triggered by the reception of an interrupt.

When the interrupt happens, the interrupt procedure does whatever it has to in order to
handle the interrupt, updates data structures and wakes up processes that was waiting for
an interrupt to happen.

The interrupt mechanism accepts an address — a number that select a specific interrupt
handling routine/function from a small set. In most architectures, this address is an offset
stored in a table called the interrupt vector table. This vector contains the memory
addresses of specialized interrupt handlers.

Device independent I/O software
The main function of I/O independent software is to perform I/O functions that are
common to all devices and provide a uniform interface to the user-level software. Though
it is hard to write completely device independent software but it is possible to write some
modules which are common among all the devices.

List of functions for device independent software:

1. Uniform interfacing for device drivers.

Operating systems (OSes) 14

2. Device naming.

3. Device protection.

4. Providing a device-independent block size.

5. Buffering: data coming off the device cannot be stored in its final destination.

6. Storage allocation on block devices.

7. Allocation an releasing dedicated devices

8. Error reporting.
User-Space I/O software
User-Space I/O software is represented by libraries which provide richer and simplifies
interface to access the functionality of the kernel or ultimately interactive with the device
drivers.

Most of user-space I/O software consist of library procedures with some exceptions like
spooling system which is a way of dealing with dedicated I/O devices in a
multiprogramming system.

I/O libraries (e.g., stdio) are in user-space to provide an interface to the OS resident
device-independent I/O SW. Example: putchar() , getchar() , printf() , and scanf() are
example of user-space I/O library in C.

Kernel I/O subsystem
Kernel I/O subsystem is responsible to provide many services related to I/O.

List of services:

1. Scheduling: Schedules a set of I/O requests to determine a good order in which to
execute them. When an application issues a blocking I/O system call, the request is
placed on the queue for that device. The kernel I/O scheduler rearranges the order of
the queue to improve overall system efficiency and the average response time
experienced by applications.

2. Buffering: Kernel I/O subsystem maintains a buffer that stores data while they are
transferred between two devices or between a device with an application operation.
Buffering is done to cope with a speed mismatch between the producer and consumer
of data stream or to adapt between devices that have different data transfer size.

3. Caching: Kernel maintains cache memory which is the region of fast memory that
hods up copies of data.

4. Spooling and device reservation: A spool is a buffer that holds output for a device,
such as printer, that cannot accept interleaved data streams. The spooling system
copies the queued spool files to the printer one at a time. In some OSes, spooling is
manages by a system daemon process. In other OSes, it is handles by an in kernel
thread.

Operating systems (OSes) 15

5. Error handling: OS that uses protected memory can guard against many kinds of
hardware and application errors.

I/O Buffering
Introduction
I/O buffering is a process of using temporary memory storage, knows as buffer, to hold
data during I/O operations.

Buffering addresses several issues in computer systems:

1. Speed mismatch:

Problem: I/O devices (e.g., disks, printers) operate significantly slower than the
CPU.

Solution: Buffers decouple the CPU from I/O device speeds by providing
temporary storage for data.

2. Data transfer granularity:

Problem: I/O devices may transfer data in small chunks, while the CPU works
better with larger, aligned blocks.

Solution: Buffers accumulate data to align transfer sizes.

3. Overlapping computations and I/O:

Problem: Without buffering, the CPU would remain idle while waiting for I/O
operations to complete.

Solution: Buffers enable asynchronous operations, allowing computation and I/O to
overlap.

4. Smooth data flow:

Problem: Interruptions in data streams (e.g., network packets) can cause
inconsistencies.

Solution: Buffers smooth out data flow, absorbing bursts or delays.

Workflow
Input buffering: Temporary stores incoming data before passing it to the CPU or
application.

Example: Keyboard input is stored in a buffer before being processed. Network
packets are buffered before being processed by the protocols stack.

Output buffering: Temporary holds data generated by the CPU or applications before
sending it to an output device.

Example: Spooling print jobs into a buffer before sending them to the printer. Writing
disk data in blocks rather than byte-by-byte.

Operating systems (OSes) 16

Double buffering: Uses two buffers. While one is being filled, the other is being
processed or transmitted.

Types of buffer
1. Single buffer: user to hold data temporary during I/O operations.

Pros:

Simple to implement.

Reduces the speed mismatch between devices and the CPU.

Cons:

Limits performance as only one operation can happen at a time (e.g., filling or
processing

2. Double buffer: two buffers are used.

Input buffer: holds incoming data while another buffer is processed.

Output buffer: Prepares outgoing data while another buffer is send to the device.

Pros:

Allows overlapping I/O and computation.

Increases throughput by reducing idle time.

Cons:

Slightly higher memory usage.

Increased complexity.

3. Circular buffer: a fixed-size buffer where data is added to the end and removed from
the front in a circular fashion.

Pros:

Efficient use of buffer space.

Suitable for continuous data streams like audio or video.

Cons:

Requires careful management to avoid overwriting unread data.

4. Spooling: a buffer-like mechanism where data is written to a temporary storage area
(e.g., a disk file) before being sent to the I/O device.

Pros:

Handles large data volumes effectively.

Decouples applications from slow output devices.

Buffering strategies

Operating systems (OSes) 17

1. Unbuffered I/O: Directly transfers data between application and the device.

2. Fully buffered I/O: Accumulates data in the buffer and processes it only when the
buffer is full or explicitly flushed. (e.g., using a high-level APIs like fprintf() .

3. Line buffered I/O: Buffers data until a new line character is encountered. Common in
interactive environments (e.g., terminal input).

4. Block buffered I/O: Buffers data in large blocks. Disk file systems like ext4 use block
buffering.

Challenges with buffering
1. Memory overhead: Buffers consume RAM, which could be used for other processes.

2. Buffers overflow: Excessive data can overwrite buffers, leading to errors or
vulnerabilities.

3. Data loss: Unflushed buffers can lead to data loss during unexpected shutdowns.

Virtual machines
Fundamental Idea
The fundamental idea behind a virtual machine is to abstract the hardware of a single
computer (CPU, disk, memory, network interface, etc.) into several different execution
environments, thereby creating the illusion that each separate execution environment is
running on its own private computer.

A virtual machine is a software emulation of a physical computer, running its own OS, and
using virtualized hardware.

Key principles of virtual machines:

Isolation: Each virtual machine is isolated from each other, so running multiple VMs on a
single host allows different environments to coexist without interference.

Hardware abstraction: Virtual machines use virtualized hardware, which is managed by a
hypervisor.

Operating systems (OSes) 18

Implementation
A concrete implementation depends on the type of a virtual machine. In general, a virtual
machine software (i.e. hypervisor) runs in a kernel-mode. Meanwhile, virtual machines
themselves run in the user-mode.

Just as a physical machine has two modes, a virtual machine itself has two modes:

a virtual kernel mode: a kernel-mode inside of a virtual machine.

a virtual user mode: a user-mode inside of a virtual machine.

Both of these virtual machine modes run in the user-mode of the physical machine they are
in.

How do virtual machines work
Hypervisor:

A core of virtualization is the hypervisor (virtual machine monitor). The hypervisor is
responsible for creating and managing virtual machines, allocation of system resources (CPU,
memory, etc) to virtual machines, isolating virtual machines from each other.

Types of hypervisors:

1. Bare-metal:

Runs directly on the host machine (without OS).

Provides high performance and resource management.

Used in data centers and enterprise environments.

Examples: VMware ESXi, MS Hyper-V, Xen, etc.

2. Hosted:

Runs on top of an existing OS.

Virtualization from the hosts point of view.

Operating systems (OSes) 19

Treated as an application on the host OS, and VMs run withing this environment.

Easy to setup but have lower performance.

Examples: Oracle VMBox, QEMU+KVM, etc.

Types of virtual machines
There are two major types of virtual machines, each serving a different goal.

System virtual machines
Provides a complete environment to run a full OS. It behaves like an independent physical
machine with its own operating system, and is able to run multiple applications.

Process virtual machines
Designed to run a single application in a virtual environment. It abstracts the execution of
an individual program from the underlying system, allowing cross-platform compatibility
for applications.

Instead of operating systems, process virtual machines use runtime environments which
provide essential services that application needs.

Internal memory management: The process VM handles memory allocation and garbage
collection within the application runtime environment, making it independent of the OS’s
memory management system.

Use case is to run programs in a platform-independent way (e.g., Java Virtual Machine
(JMV), Python Virtual Machine (PVM).

System calls
OS modes (OS spaces) user and kernel

Introduction
An operating system has two main operating modes for applications — user mode and
kernel mode.

1. User mode:

Purpose: run general-purpose user applications.

Restrictions: limited access to system resources and various restrictions to
prevent unauthorized access.

2. Kernel mode:

Purpose: provides the OS with privileged access to system resources and
hardware.

Privileges: the kernel mode enables executions of privileged instructions, access
memory directly and control hardware access.

Operating systems (OSes) 20

Context switching
If a program needs to perform a privileged operation (e.g., access the file system), it must
request the OS to switch to kernel mode and perform the operation. The OS performs the
operation in the kernel mode then returns the control to the user-mode process.

NOTE: when a program is execution in Kernel mode and if this program happens to crash
during its executions then the entire system could crash.

System calls
Definition
When a user-mode process needs a privileged access this process makes a system call in
order to switch to the kernel mode.

The call the process makes in order to switch modes in knows as the system call.

System call is the programmatic way in which a computer program requests a service from
the kernel of the OS.

These calls are generally available as routines (a fixed set of machine instructions) written
in C or C++.

System calls interface
Application interact with the System Call Interface

OS program execution modes

Operating systems (OSes) 21

Types
1. Process control:

end, abort, load, execute.

create process, terminate process.

get process attributes, set process attributes.

wait for time, signal event, wait event.

allocate, free memory.

2. File manipulations:

create file, delete file.

read, write a file.

open, close a file.

3. Device manipulation:

request, release a device.

read, write, reposition.

get, set device attributes.

logically attach and detach device.

4. Information maintenance:

get time or date; get, set system date.

get process, file or device data.

System Call Interface in the OS (Linux, Ubuntu 22.04).

Operating systems (OSes) 22

5. Communications:

used for communication between different processes and devices.

create, delete communication connection.

send, receive messages; transfer status information.

attach or detach remote devices.

Types of programs (system & user)
User programs
Purpose: User applications are designed to directly interact with users to perform user
specific tasks.

Implementation: User applications are reliant on underlying system software (operating
system) to provide essential services like I/O, memory management and process
scheduling. Users control the entire application through interfaces (e.g., CLI or GUI).

System programs
Purpose: Manage and control hardware and software resources of operating system.
(e.g., device drivers, compilers, shells, etc.).

Implementation: May depend on another system software or the kernel for core services.

Memory
Main memory (hardware)

Introduction
Main memory, commonly known as RAM (Random Access Memory), is a critical
component in computer systems, bridging the gap between the CPU and long-term
storage. Main memory temporarily holds data and instructions (machine code) that the
CPU needs for executing programs, allowing the system to operate at high speed. Main
memory is volatile, meaning it loses all the data after electrical power is lost.

Programs hierarchy in OSes.

Operating systems (OSes) 23

Structure and physical organization
Main memory is implemented using memory chips that are embedded on modules like
DIMMs (Dual Inline Memory Module).

Types of RAM (DRAM / SRAM)
Dynamic RAM (DRAM):

The most common type of memory, each memory cell consists of capacitor (to store bit)
and a transistor (to control access to the cell).

Widely used for main memory due to its cost efficiency and high density.

Required periodic refreshing to maintain data, as the capacitors in DRAM cells lose
charge over time.

DRAM is slower than SRAM but can store more data in smaller area.

Static RAM (SRAM):

Does not require refreshing, because it stores data using flip-flops circuits.

Faster and more reliable than DRAM but it more expensive and larger.

SRAM is used in CPU caching.

Memory controller and buses
Memory controller:

Manages data transferred between CPU and main memory.

Handles tasks like: address decoding, data buffering, DRAM refreshing.

In modern systems, the memory controller is often integrated into CPU chip to reduce
latency, increase data throughput, and improve overall efficiency.

Data bus: controls the actual data being read form or written to memory. Typically,
transfers a machine word per operation.

Address bus: carries the memory addresses that CPU uses to locate specific data in
memory. The width of the address bus determines the maximum amount of memory the
system can address (e.g. a 32-bit address but can address up to 4 GB of memory).

Control bus: Caries signals for read and write operations, memory refresh signals, and
other control information necessary to manage memory operations.

Data access in main memory workflow
When a CPU need to access data in main memory, it follows a sequence of steps using
memory controller and busses.

1. Address request: the CPU places memory address on the address but. The address
indicates a specific location in main memory where data should be read from or written

Operating systems (OSes) 24

to.

2. Address decoding: The main memory controller decodes these addresses to locate
the corresponding row and column within the memory chip.

3. Data access:

Read operation: the memory controller retrieves data from the specific memory
cells and places it on the data bus, where CPU can access them.

Write operation: the CPU send data over the data bus, and the memory controller
writes it to the specified locations in the memory cells.

4. Refresh cycle (for DRAM): the memory controller periodically refreshes the memory
cells by reading and rewriting data to prevent data loss from capacitors discharge.

Logical and physical address space
Main memory is a computer system is accessed using two primary types of addresses:
logical (virtual) and physical.

Logical (Virtual) address space:

Generated by the CPU while a program is running.

Refers as virtual space because it represents the addresses that are seen by a
program.

Consists of all logical addresses that a process can use during its execution.

Physical address space:

Actual addresses in the main memory.

Represent a specific location in main memory where data or instructions reside.

Virtual memory
Definition
Virtual memory is a storage allocation scheme in which secondary memory can be
addressed as though it were a part of the main memory. The addresses a program may
use to refer to memory are distinguished from the addressed the memory system uses to
identify physical storage sites and program guaranteed that addresses are transmitted
automatically to corresponding machine addresses.

Virtual memory is a memory management technique that allows provides to programs
appearance of memory as a long continues block, even if the physical memory is limited.
Additionally, it allows OS to compensate for physical memory, enabling other (larger)
application to run with less memory, and use secondary memory as it were the main
memory.

The size of virtual memory is limited by the addressing scheme of the computer and the
amount of secondary storage available.

Operating systems (OSes) 25

Virtual Memory vs Physical Memory

Feature Virtual Memory Physical Memory (RAM)

Definition
An abstraction that extends
the available memory by
using the disk storage.

The actual hardware RAM
that stores data in
instructions currently being
used by the CPU

Speed Slower (due to I/O
operations)

Faster (accessed directly by
the CPU)

Location On the hard drive or SSD On the PC motherboard.

Capacity Larger Smaller

Data access Indirect (via paging and
swapping).

Direct (by CPU).

Volatility Non-volatile Volatile

How does it work
This technique is implemented using both hardware and software. It maps memory
addresses used by a program, called virtual addresses, into physical addresses in
computer.

All memory references within a process are logical addresses that are dynamically
converted into physical addresses as run time. This means that the process can be
swapped in and out of the main memory such that it occupies different places in the
main memory at different time during execution.

A process can be broken into pieces and these pieces need not be continuously
located in the main memory during execution. The combination of dynamic run-time
address translation and the use of a page or segment table permits this.

Memory Management Unit (MMU)
The memory management unit is a physical chip located on a CPU circuit providing a
hardware support for memory virtualization in operating systems by translating virtual
addresses into physical addresses.

MMU main functions:

1. Address translation (mapping): Translates logical addresses into physical addresses.

2. Dynamic address building: The MMU performs translation at runtime, allowing each
process to operate in its own logical address space, which the MMU maps to available
physical addresses in main memory.

3. Protection: Provides protection by ensuring that processes cannot access each other’s
memory, supporting process isolation.

Example: logical 0x2000 →physical 0xACF200 .

Operating systems (OSes) 26

Types of Virtual Memory
In a computer, virtual memory is managed my the Memory Management Unit (MMU),
which is often build into the CPU. The CPU generated virtual addresses that the MMU
translates into physical addresses.

There are two main types of virtual memory:

1. Pagination.

2. Segmentation.

Dynamic loading
Dynamic loading is the technique that loads a programs’s components into main memory
only when needed, rather than all at once.

Dynamic loading workflow:

1. Program segmentation: a program is divided into smaller components, such as
routines and functions.

2. On-demand loading: when the program needs to access a particular routine, the OS
loads that specific routine into memory.

3. Code stub: if a routine is not loaded yet, the program uses a code stub, which is a
small piece of code that triggers the OS to load the routine into memory.

Pros:

Reduce memory usage: only necessary routines are loaded, leaving more memory
available for other processes.

Faster stat up: programs start more quickly because only essential (initial) components
are loaded at the beginning.

Dynamic linking
Dynamic linking is a process of linking a program to external libraries or modules at
runtime rather than at compile time. It contrasts with static linking where all library core is
compiles into the program executable code at compile time.

Dynamic linking workflow:

1. External libraries: the program refers external libraries or modules that are loaded into
memory separately from the program, but does not include their code in the compiled
binary.

2. Linking loader: when a program stats, the OS’s linking loader dynamically links the
program to these libraries.

3. Relocation table: the executable contains a relocation table with addresses for each
dynamically linked function or variable, and the loader updates these references to

Operating systems (OSes) 27

point to the memory addresses of the loaded libraries.

Pros:

Reduces program size.

Easy updates: independent libraries and modules can be updated separately.

Example: the printf() function in the C language. This function is dynamically loaded form
the libc.so library at runtime.
Shared libraries
Shared libraries are files containing code (functions, routines, etc) that multiple programs
can use concurrently. They are commonly used in dynamic linking, allowing applications to
use same library code loaded in memory.

How do shared libraries work:

1. Single copy in memory: the OS loads a shared library into memory once and maps it to
the virtual address space of all programs that need it.

2. Reference counting: the OS keeps track of how many programs are using the shared
library, ensuring that the library is unloaded when it’s not needed.

3. Position independent code (PIC): shared libraries are typically compiled as position
independent code, allowing them to be loaded at any memory address.

Swapping
Swapping is a memory management technique used by the OS to handle situations where
the main memory (RAM) is fully occupied, and additional processes are needed to be
executed. Swapping involves moving entire process or its pagers or its segments from the
main memory to the secondary storage (disk).

Swapping workflow:

1. Process in memory: when a process is active it resides in the main memory.

2. Memory full: if the main memory is full and a higher priority process needs space, the
OS moves a currently inactive or low-priority process (or its part) to the secondary
storage area called a “swap space”.

3. Swapping back: when the swapped-out process needs to be executed again, the OS
moves it back from the swap space to the main memory, possibly swapping another
process out if necessary.

Pros:

Efficient memory usage: allows to execute more processes than the physical memory
can hold simultaneously.

Prioritization: higher priority processes are keeps in the main memory.

Operating systems (OSes) 28

Cons:

Swap time: swapping is an expansive operation due to slow read/write speed of the
secondary storage.

Disk I/O overhead.
Fragmentation
Memory fragmentation is a type of memory disruption that can lead to inefficient memory
usage by leaving some blocks of memory unused.

Types of memory fragmentation:

1. External fragmentation: Occurs when memory is split into small, non-contiguous
blocks that are too small to satisfy allocation requirements, even if the total free
memory is sufficient.

Example: If a process allocates a 4 KB block, but the free memory is scattered into
multiple blocks 1 KB each, no new 4 KB process can be allocated despite sufficient
total free memory.

2. Internal fragmentation: Occurs when memory is allocated in fixed-size blocks, and the
process does not fully use the allocated space, leading to wasted memory within the
block.

Example: a process uses 3 KB of 4 KB, hence the fragmentation is 1 KB.

Memory allocation
Memory allocation is how the OS assigns main memory to the processes. Proper memory
allocation strategies ensure efficient use of RAM and optimize system performance.

Types of memory allocation:

1. Contiguous: each process is allocated a single contiguous block of memory.

Pros:

Simple and fast to manage due to straightforward memory address calculation.

Cons:

Lead to memory fragmentation: unused memory blocks scattered between
allocation segments, limiting efficient memory use.

2. Non-contiguous: a process is allocated memory in multiple non-contiguous blocks.
this method is more flexible and supports pagination and segmentation.

Pros:

Reduces memory fragmentation.

Cons:

Operating systems (OSes) 29

May increase memory access time due to additional complexity of managing non-
contiguous blocks.

Memory allocation strategies
Strategies used to allocate memory blocks for processes.

1. First-fit: The allocator scans memory and assigns the first available block that is large
enough for the request.

Pros:

Fast and Simple.

Cons:

Tends to create external fragmentation over time.

2. Best-fit: The allocator finds the smallest available block that fits the request,
minimizing wasted time.

Pros:

Reduces wasted space in the allocated block.

Cons:

Slower.

Might increase external fragmentation by leaving small gaps.

3. Worst-fit: The allocator chooses the largest available block, leaving the largest
leftover place.

Segmentation
Introduction
Segmentation is a memory management technique that divides a process’s memory into
variable-size segments based on logical division within the program.

Key concepts of segmentation:

Logical division: Memory divided based on logical segments of a process, reflecting
how a program is structured (e.g, functions, arrays, modules).

Variable segment size: Each segment has a custom size.

Segment table: Each process has a segment table that stores the base address and
limit (size) for each segment, allowing the OS to map logical segments addresses to
physical memory locations.

NOTE: Modern operating systems do not use segmentation, instead they use pagination
only.

Segment tables

Operating systems (OSes) 30

The segment table is a data structure that maps logical segments to physical memory. It
holds two main pieces of information for each segment:

Base address: The starting physical address of the segment in main memory.

Limit: The length of the segment, defining its size.
Address translation using the segment table

When a process references a memory location using logical address, the logical
address contains segment number and the offset.

The segment is used to index the segment table and retrieve the base address and the
limit.

The offset is used to calculate the physical address.

Example: If a logical address (e.g. 0x10AFB) references segments 2 within an offset of 500.

1. The OS checks segment table entry for the segment 2 to find the base address (e.g.
1000).

2. The physical address is calculated as ﻿.

3. the OS verifies that offset does not exceed the limit of the segment to prevent memory
violation.

Pagination
Introduction
Pagination is a memory management scheme that eliminates the need for contiguous
allocation of physical memory. Instead, it allows processes to be divided into fixed-size
blocks of virtual memory called pages, which are located into equally-seized blocks in
physical memory called frames.

Key concepts:

Pages: Fixed-size blocks of a process’s virtual (logical) memory.

Frames: Fixed-size blocks of physical memory.

Page table: A data structure used to map logical addresses to physical addresses.

Page tables
The page table is central for pagination process. It stores the mapping between logical
page numbers (addresses) that is used by a process, and physical frame number
(addresses) that is used by the hardware memory controller.

Page table structure: Page tables are often implemented as hash maps that values point
to arrays, and keys are hashed virtual addresses. Each array is referred as the page entry.
Each entry in a page corresponding to a logical page (key in a hash table) and contains the
frame number (address) where the page resides in the physical memory.

1000 + 500 = 1500

Operating systems (OSes) 31

Page Table Entry (PTE): Each entry in a page contains crucial information to manage and
translate logical addresses into physical addresses.

Components of a page entry (PTE):

Frame number: the number (address) of the physical frame holding the page.

Valid/Invalid bit: indicates whether the page is currently in the main memory (valid) or
swapped out to the disk (invalid).

Protection bit: specifies permissions (e.g. read, write, execute) for page.

Referenced bit: indicates if the page has been accessed recently (used for page
replacement algorithms).

Dirty bit: indicated if the page has been modified; used to decide if the page needs to
be written back to the disk ?

Types of page tables
1. Hierarchical: hierarchical is used to manage very large page tables which ban be

implemented for modern systems with large address spaces. By splitting the page into
sub-tables.

How it works:

The logical address is divided into multiple parts, each part represents an index
into different levels of the page table.

First-part index into first level table, which points to the second level table.

The process continues until the final table provides the frame number.

2. Hashed: Hashed tables are used for systems with large address space, such as 64-bit
systems, where even hierarchical page table may become too large.

How it works:

The virtual page number is hashed to create an index into a hash table.

Each entry in a hash table points to a linked list (or array) of page table entries that
have the same hash value.

The linked list (or array) is searched linearly to find the correct entry.

3. Inverted: inverted pages are another method designed to address the high memory
cost of traditional page tables, especially in large address spaces.

How it works:

Mapping starts from a physical frame address back to logical page address,
despite the actual address translation begins from virtual space and ends up with a
physical memory frame.

Operating systems (OSes) 32

Whether or not the page is in the main memory, there is always place reserved for
it.

Shared pages
Shared pages allow multiple processes to access same physical memory frames. This is
commonly used for shared libraries, or read-only code segments.

Implementation

The page table of each process has an entry pointing to the same frame in physical
memory. Ensure that shared pages are accessed appropriately (e.g. protections bits are
set as read-only).

Demand paging
Demand paging is a virtual memory technique where pages are loaded into main memory
only when they are needed during the course of a program execution, rather than
preloading the entire process into the main memory.

Demand paging workflow:

1. Page request: the process requests the page, and the OS checks the page table to
see if the page is active.

2. Page fault: if the page is not in the main memory, the page fault occurs.

3. Page load: the OS pauses the entire process and loads page into the memory.

4. Process resumption: after loading the page the OS continues the process execution.

Performance:

The performance of demand paging depends on the page fault rate and the cost of
handling a page fault. The page demanding performance is calculated using the effective
access time (EAT) equation:

﻿.

Where:

p - probability of a page fault (page fault rate)

Memory access time - time to access main memory.

Page fault service time - includes the time to handle a page fault.

Example: given memory access time = 100 ms, page service tome = 10 ms (10_000_000
ns). For a page fault rate p = 0.001.

The ﻿

Demand paging performance can be optimize by efficient page replacement algorithms
such as LRU (Least Recently Used).

Thrashing

EAC = (1 − p) ∗ MemoryAccressTime + p ∗ PageFaultServiceTime

EAC = (1 − 0.001) ∗ 100 + 0.001 ∗ 10000000 ≈ 10.099ns

Operating systems (OSes) 33

Trashing occurs when the system spend more time handling page faults than executing
the actual process due to high page fault rate.

Solutions:

1. Working set model: keeps track of pages a process needs to over specific time interval
and ensures that these pages stay in memory

2. Page fault frequency (PFF): monitor page fault rate and adjust the allocation of
memory per process accordingly.

Copy-on-Write (CoW)
Copy-On-Write (CoW) is an optimization strategy used in demand paging to efficiently
handle process creation operations as fork() .

Copy-On-Write workflow:

1. Initial sharing: when a process is forked, both parent and child processes share the
same physical memory pages.

2. Making as read-only: the shared pages are marked a read-only.

3. Copy-on-Modification: if either process attempts to modify a shared page, the OS
makes a copy of page for the modifying process. This ensures that each process has
its own copy after modification.

Page replacement algorithms
First-in-First-out (FIFO) replacement
Method: replaces page that has been in memory the longest.

Implementation: pages are stored in a queue, and the page in the front is replaced when a
page fault occurs.

Pros: Simple to implement.

Cons: sub optimal performance, as the page access frequency is not considered.

Besady’s anomaly: a situation when increasing the number of page frames can lead to
more page faults, which is unexpected because adding more memory should ideally
decrease page faults or keep them the same.

Optimal page replacement
Methods: replace page that will not be used for the longest period of time in the future.

Implementation: the algorithm is theoretical.

Pros: Provides lowest possible page fault rate.

Cons: Not feasible to implement due to the need for future knowledge.

Least Recently Used (LRU) replacement
Method: replace pages that has not been used for the longest time.

Operating systems (OSes) 34

Implementation: requires tracking the usage of pages, typically by using counter or stack.

Pros: efficient in practice, as pages that have not been used recently are less likely to be
required soon.

Cons: complex implementation and required hardware and software overhead.

Implementation example:

Using a doubly linked list and a hash map for efficient LRU \

implementation

class LRUCache:

 def __init__(self, capacity):

 self.capacity = capacity

 # Hash map to store pages (key: page number, value: node)

 self.cache = {}

 # Doubly linked list to track LRU order

 self.order = DoublyLinkedList()

 def access_page(self, page):

 if page in self.cache:

 # Move the page to the front (most recently used)

 node = self.cache[page]

 self.order.move_to_front(node)

 else:

 # Page fault, need to load the page

 if len(self.cache) >= self.capacity:

 # Remove the least recently used page from the end

 lru_page = self.order.remove_from_end()

 del self.cache[lru_page]

 # Add the new page to the front

 new_node = self.order.add_to_front(page)

 self.cache[page] = new_node

class DoublyLinkedList:

 # Methods to add, remove, and move nodes within the list

Least Frequently Used (LFU) replacement
Method: replace the page that has been accessed the least number of times.

Implementation: a counter is assigned to each page to track how often it is accessed.

Pros: ensures that infrequent pages are replaced.

Operating systems (OSes) 35

Cons: can perform poorly if certain pages were heavily used at one time but are not longer
required.

Page buffering algorithm
Introduction
The page buffering algorithm is used in OSes and database management systems as a key
method to streamline data access and minimize disk I/O operations. It’s largely used in
virtual memory systems, where data is kept on secondary storage and brought into
memory on demand.

The primary goal is to reduce latency assassinated with accessing the data on disk. The
approach optimizes performance by intelligently buffering frequently visited pages in
memory, minimizing the requirement for disk I/O operations.

Terminology
Buffer (Cache): the technique is used in this algorithm keeps a portion of pages that
are currently stored in on the disk in a buffer (cache) that is located in the main
memory. The buffer serves as a short-term repository for frequently used pages.

Page request: the OS determines if the page is already in the buffer when a process
requests a specific page.

Eviction approach: the page buffering algorithm uses eviction approach to free up
space for freshly requested pages, because the page buffer has a finite capacity. A
page replacement policy is used to determine which page or pages should be replaced
to make room for new pages.

Locality of reference: the notion of locality, which asserts the recently viewed pages
are likely to be accesses again soon.

Workflow
1. Buffer initialization: a portion of main memory, known as buffer or cache, is reserved

to hold a subset of pages from secondary storage (disk) and it is initially empty.

2. Page request: the OS determines if a requested page is already in the buffer.

a. Cache “hit”: the page can be accesses directly.

b. Cache “miss”: the disk I/O operation is triggered to load the page.

3. Buffer management: the page buffering algorithm controls the buffer as pages as
added. An eviction approach is used to free up space. In this process following page
replacement algorithms can be used: FIFO, LRU, Clock algorithm.

4. Access and Update: a page may be directly read and changed in memory once it is in
the buffer, obviating the requirements for disk I/O operation. Data consistency is
ensured by the eventual propagation of any changes in the buffer back to secondary
storage.

Operating systems (OSes) 36

5. Locality of reference: recently viewed pages are likely to be accessed again soon.
The program predicts future access by buffering these frequently used pages in
memory.

Implementation
1. Data structure chosen to represent the buffer (cache) in memory.

2. Page table is maintained and updated. which stores all mapping of the virtual memory
addresses and the corresponding pages in buffer.

3. The the initial state, the buffer is empty and the page table entries are initialized
accordingly and the status bits are set correspondingly. The status bits indicate
whether the page is currently in the buffer or not.

4. The page buffering algorithm decides whether the page is requested or not , after that
it checks whether the page is already in the buffer or not.

5. The page buffering method adjusts continuously to processes’ shifting access
patterns. It forecasts future access patterns and modifies the buffer content
dynamically.

Frames allocation
Introduction

Page buffering workflow scheme.

Operating systems (OSes) 37

In virtual memory systems, frames are fixed-size blocks of physical memory (RAM) into
witch pages from processes virtual address space are loaded.

Key characteristics of frames:

Fixed size: frames are the same size as pages (typically 4 KB), ensuring easy mapping
of virtual pages to physical frames.

Page mapping: each virtual page of a process is mapped to a frame in physical
memory via the page table.

Efficient use of memory: since frames and pages are the same size, there is no need
for memory compaction.

Allocation
Frame allocation determines how frames are assigned to processes in the system. When
multiple processes compete for physical memory, the OS must decide how to divide the
available frames among them.

Key questions in frame allocation:

How many frames should each process have ?

Which frames should be allocated to a process during execution ?

What should happen when a process requires more frames than available ?

Minimum frames per process: each process requires a minimum number of frames to
execute. For example, the number of frames required to hold all instructions for a single
machine cycle (like a CPU instructions plus its operands).

Maximum frames per process: the total number of available frames in physical memory
determines the maximum allocation.

Algorithms
There are two main strategies in frames allocations.

Equal allocation: divide the total number of frames among all processes. Example: if 100
frames are available and there are 5 processes, each process gets 25 frames.

Pros:

Simple implementation

Equal allocation ensures no single process monopolizes memory.

Cons:

Not efficient if processes have varying memory needs. (e.g. larger process may not
get enough frames).

Proportional allocation: allocate frames based on the size of each process related to the
total size of all processes. Example: a process A requires 10 frames, and the process B

Operating systems (OSes) 38

requires 30 frames. If 100 frames are available, A gets ﻿ frames, and B gets
﻿ frames.

Pros:

improved efficiency.

Cons:

Can lead to starvation of smaller processes have insufficient frames.
Global vs local allocation
The number of frames per process can be also dynamically changed. The frame allocation
can be further divided into two strategies:

1. Local allocation: Each process is assigned a fixed number of frames, and when a
page replacement is required the replacement occurs only within this process’s
allocated frames. A process can only replace its own frames, isolating it from other
processes.

Pros:

Prevent interference between processes.

Ensures predictable performance for individual processes.

Cons:

Less flexible as memory requirements for process change over the time.

2. Global allocation: Frames are allocated to processes from a single, shared pool of
frames. When a process need to perform a frame replacement, it can replace a frame
belonging to any processes.

Pros:

Dynamically adjusts to changing needs of processes.

More flexible as processes can use memory as required.

Cons:

Can lead to process interference when a process affects another process by
stealing its frames.

Unpredictable performance for individual processes.

Working set model
The working set model is a memory management strategy that aims to allocate frames
dynamically based on the current memory needs for each process. It helps in reducing
thrashing by ensuring that a process has enough frames to hold its working set.

Working set definition: the working set of a process is the set of pages that it is actually
using during a given time interval D. This set changes overtime as the process moves in

​ ∗40
10 100 = 25

​ ∗40
30 100 = 75

Operating systems (OSes) 39

different phases of execution.

How it works:

1. Track recent page replacement: the OS monitors the page accessed by a process
within the interval D.

2. Adjust frame allocation:

a. If the working set grows, the process may need more frames.

b. If the working set shrinks, the process may release frames for other processes.

3. Page fault reduction: by ensuring that the working set is fully in memory, the OS
minimizes page faults.

Memory layout of C programs
Introduction
Process memory layout is a fundamental concept of how OS organizes virtual memory for
running programs (processes). Each process in a computer system is provided with its
own virtual memory space, which is divided into distinct sections for different purposes.
This organization ensures isolation, efficiency, and scalability in multitasking
environments.

A process memory layout refers to logical arrangement of memory allocated to a process
during its execution. The memory is divided into distinct segments or regions, each
serving a specific role. This segments include the text, data, heap, stack, shared libraries.

Key features:

Isolation: Each process gets its own memory space, with the OS maps to physical
memory.

Flexibility: Virtual memory allows process to use memory without worrying about the
underlying hardware components.

Protection: The OS enforces access controls, ensuring processes cannot interfere
with each other.

Components of process memory layout
1. Text segment: Contains the compiled program code (executable binary code).

Marked as “read-only” to protect accidental or malicious modifications of the
executable code.

Can be shared among processes running the same program to save memory.

Occupies the lowest part of the memory address space.

2. Data segment: Stores global variables, static variables, and initialized data.

Subdivision:

Operating systems (OSes) 40

Initialized data: Contains variables that are explicitly initialized in the program (e.g.,
int x = 10; .

Uninitialized data (BSS): Contains uninitialized global and static variables. Process
can modify the data in this segment during the execution. Initially, the OS initializes
uninitialized variables to 0.

3. Heap segment: Used for dynamic memory allocation during the runtime (e.g.,
malloc() in C).

Grows upward in memory (toward higher addresses) as more memory allocated.

Managed explicitly by a programmer or dynamically by the runtime environment.

4. Stack segment: Stores function call frames, including local variables, return
addresses, and function arguments.

Grown downwards in memory as more function calls are made.

Automatically managed by the OS; memory is allocated when a function call is
made and deallocated when it returns.

If the stack grows too large and collided with the heap, a stack overflow occurs.

5. Shared libraries and memory-mapped segments:

Shared libraries: store code for dynamically linked libraries (e.g., files with the
“*.so” extension in Linux, and files with the “*.dll.” extension in Windows.

Memory-mapped segments: used for efficient file I/O and inter-process
communication. Allows processes to map files directly into memory, enabling fast
access.

6. Kernel space: In systems with virtual memory, part of the address space is reserved
for the kernel. Kernel space manages OS operations (e.g. handling interrupts,
managing hardware resources). Not directly available to user-mode processes to
ensure security and stability.

Typical process memory layout
Tho process memory layout may be influence by a runtime environment of a process.

Operating systems (OSes) 41

Example in Linux
In Linux, a process’s virtual memory layout can be inspected using /proc/[PID]/maps or pmap .

Example of /proc/self/maps Output

Running cat /proc/self/maps for a running process might show:

00400000-0040b000 r-xp 00000000 08:01 123456 /bin/bash

0060a000-0060b000 r--p 0000a000 08:01 123456 /bin/bash

0060b000-0060c000 rw-p 0000b000 08:01 123456 /bin/bash

7ffd3a5be000-7ffd3a5df000 rw-p 00000000 00:00 0 [stack]

7ffddf5ee000-7ffddf5ff000 r-xp 00000000 08:01 654321 /lib/libc.so.

Explanation:

Text Segment: /bin/bash executable code (r-xp indicates read, execute permissions).

Data Segment: Writable section of the binary.

Stack: Marked as [stack] .

Shared Libraries: Dynamically loaded libraries like libc.so.6 .

Process runtime environment
Introduction
A runtime environment bridges the gap between the high-level code written by
programmers and the underlying system resources, enabling programs to execute
consistently and effectively across different platforms.

A runtime environment (RTI): is a software layer that provides the necessary resources,
tools, and abstraction to execute a program. It encompasses everything required for the
program to run, including:

Typical process memory layout

Operating systems (OSes) 42

Memory management

I/O operations

System Calls handling

Error handling and exception processing

Interactions with the OS and hardware.

Key features of runtime environments:

1. Platform abstraction: abstracts hardware and OS details so programs can run
independently of the underlying platform.

Example: Java Virtual Machine (JVM) enables Java applications to run on different
OSes.

2. Execution context: provides a controlled execution environment where programs
execute securely and predictably.

3. Dynamic features: enables features like dynamic linking, memory allocation, and
garbage collection during program execution.

Components
1. Runtime libraries: provide precompiled code and API that program can use at runtime.

Example: libc in C/C++ programs provide standard functions like printf() and malloc() .

2. Virtual machines: executes programs in virtualized environment, ensuring platform
independence.

Example: Java Virtual Machine (JVM), .NET Common Language Runtime (CLR) for
.NET applications.

3. Memory management: handles dynamic memory allocation, deallocation. and
garbage collection. Ensures efficient use of memory and prevents memory leaks.

4. Exception handler: detects and handles runtime errors such as illegal memory access,
divisions by 0 or stack overflow. Provides mechanisms like “try-catch” block to
manage exceptions gracefully.

5. System call interface: mediates interactions between the program and the OS.

Example: file I/O operations like open() and read() in Linux.

6. Execution engine: Interprets or compiles code into machine instructions for execution.

Example:

Interpreter: execute code line-by-line (e.g. Python interpreter).

Just-in-Time (JIT) Compilers: dynamically compile high-level code during
execution (e.g., JVM’s HotSpot JIT compiler).

Operating systems (OSes) 43

Types
1. Native runtime environment: directly interact with the hardware and OS.

Example:

C runtime environment (CRI): provides runtime support for C programs via libraries
like glibc (GNU C lib).

POSIX runtimes: support for applications written for POSIX-compliant systems.

2. Managed runtime environment: provides advanced features like garbage collection,
dynamic typing, and secure execution.

Example: Java Runtime Environment (JRE): includes the JVM, standard libraries, and
runtime tools. Ensures platform independence for Java programs.

3. Web runtime environment: designed for execution web-based applications:

Example:

JavaScript runtime (e.g., Node.js): executes JS outside the browser, enabling
server-side applications.

WebAssembley (Wasm): allows high performance code to run in browser.

Runtime environments workflow
Step-by-Step execution:

1. Loading: the programs and required libraries are loaded into memory.

2. Initialization: the runtime environment initializes global variables (DATA/BSS), sets up
the stack and allocated heap space.

3. Execution: the code in interpreted or compiled into machine instructions by the
execution engine.

4. Resource management: the runtime manages resources like memory, file handlers,
and threads.

5. Termination: clean up memory and resources upon program completion.

File Systems
File system

Core concept
A file system is the method of organization and storing data on a storage device, such as
hard drive, solid state drive, etc. It provides a hierarchical structure of directories and files,
enabling efficient storage, retrieval, and management of data.

Operating systems (OSes) 44

A file system comes with a driver that implements algorithms to perform operation with the
file system (i.e., read, write, data blocks, etc.). A driver typically comes as an OS kernel
library.

Key concepts of a file system:

File: the basic unit of data storage, containing a sequence of bytes.

Directory (folder): a container for files and other directories, organizing data into
hierarchical structure.

Metadata: information about a file, such as its size, creation date, and permissions.

File system driver: the key component of a file system. It is software component that
interacts with the storage device and implements the file system’s logic.

Core functionalities
Storage allocation: assigning a space to file and directories.

File access: locating and retrieving files based on their names and paths.

File creation and deletion.

File modification: updating content of existing files.

File permissions: controlling access to files and directories.

Disk space management: tracking free and unused space on the storage device.

Types
FAT32: An older file system that is still widely used for older devices and USB drives. It
is simple and easy to use, but it has a number of limitations, such as a maximum file
size of 4 GB and a maximum partition size of 32 GB

NTFS: The default file system for Windows. It is more advanced than FAT32 and
supports larger files and partitions. It also has features such as encryption,
compression, and file system journaling

EXT4: The latest version of the ext file system. It is more efficient and reliable than
ext3, and it supports larger file sizes and partitions

etc.

Files
Introduction
A file is a fundamental unit of storage in a file system, representing a sequence of bytes
stored on a disk. Files abstract storage details, enabling users and programs to store and
retrieve data conveniently.

Key characteristics:

Operating systems (OSes) 45

Logical structure: files are typically organized as sequence of bytes, regarding of the
data they contain (text, binary, etc.).

Persistence: files remain store on the disk even after the power supply is off.

Name: a unique identifier used to reference the file.
File structure

Unstructured files: treated as a raw sequence of bytes. They can contain text, images.
audio, etc. While they may have some internal structure, it is not as rigid as structured
data.

Structured files: are organized in a predefined formats, typically tubular or
hierarchical. They adhere a specific data model or schema, which defines the structure
and relationships between different data elements. This make them easily searchable
and analyzable and machine-readable.

Example:

JSON: a lightweight format of data interchange.

XML: uses tags to define the structure and content of files.

CSV: a simple text file where data is separated by commas.

Key differences between structured and unstructured files:

Feature Structured Unstructured

Organization predefined format no predefined format

Accessibility
easily searchable and
analyzable.

more challenging to search
and analyze.

Storage often stored in database. stored in file system

Example JSON, XML, CSV text documents, images, …

Example in etx4 file system, fines are represented as inodes (index nodes) containing
metadata and pointers to data blocks.

File attributes
Files have associated metadata, referred to as file attributes, which describe their
properties.

Common file attributes:

1. Name: human-readable name of a file.

2. Identifier (Inode number): a unique number identifying the file wile within the file
system.

3. Type: indicates the nature of the file (regular, link, directory, etc.).

4. Size: the size of a file in bytes.

Operating systems (OSes) 46

5. Location: a pointer to the physical storage block where the file data is stored.

6. Protection: access permissions for different user categories. (e.g., owner, group,
others). Example: rwxr-x-r-- .

7. Time stamps: file creation, modification, access time.
File operations
Operating systems provide a standard set of file operations that allow users and
applications to interact with files.

Key Operations:
1. Create:

Creates a new file in the file system.

Example: touch newfile.txt in Linux.

2. Open:

Prepares a file for reading, writing, or both by creating a file descriptor.

Example: open() system call in Linux.

3. Read:

Retrieves data from the file starting at the current file pointer position.

Example:

ssize_t bytes_read = read(fd, buffer, size);

4. Write:

Writes data to the file starting at the current file pointer position.

Example:

size_t bytes_written = write(fd, buffer, size);

5. Close:

Releases resources associated with an open file descriptor.

Example:

close(fd);

6. Delete:

Removes a file from the file system, freeing its storage blocks.

Operating systems (OSes) 47

Example: rm file.txt in Linux.

7. Seek:

Moves the file pointer to a specific position for reading or writing.

Example in Linux:

off_t offset = lseek(fd, position, SEEK_SET);

8. Rename:

Changes the name of the file.

Example: mv oldname.txt newname.txt .
File types
Files can be classified based on their purpose and format.

Common file types:

1. Regular files (”-”): store user data such as text, images, videos, binary programs, etc.

2. Directories (”d”): special files that contain pointers to another files or directories.

3. Special files: represent hardware devices or provide special functionality.

a. Character device (“c”): for character-by-character data transfer (e.g., /dev/tty).

b. Block device driver (”b”): for block data transfer (e.g., /dev/sda).

4. Symbolic links (”s”): pointers to another file or directory.

a. Hard links (not symbolic): direct reference to Inode, multiple names for the same
data, cannot point to files on different file system, deleting the original file (Inode)
does not effect hard links and the original data (as the original Inode is not deleted
only the name). Use case: copying important data.

b. Soft (symbolic) links: indirect reference via a path, deleting the original file (Inode)
make a soft link invalid. Use case: creating a shortcut.

5. Pipes and Sockets: used for inter-process communications.

Access methods
Files can be accessed using different methods depending on their structure and use case.

A. Sequential Access

Data is read or written sequentially from the beginning to the end of the file.

Simplest and most common method.

Example:

Operating systems (OSes) 48

FILE *fp = fopen("file.txt", "r");

while (fgets(buffer, size, fp)) {

 // Process line

}

fclose(fp);

B. Direct (Random) Access

Allows reading or writing data at specific positions in the file.

Useful for databases or large files where only specific parts need to be accessed.

Example in Linux:

lseek(fd, offset, SEEK_SET);

read(fd, buffer, size);

C. Indexed Access

Uses an index to locate file blocks, enabling efficient random access.

Example: A database file with an index for quick lookups.

D. Memory-Mapped Files

Maps a file directly into the process's virtual memory, enabling faster access.

Example in Linux:

void *mapped = mmap(NULL, size, PROT_READ, MAP_PRIVATE, fd, 0);

Directories
Introduction
A directory servers as a container for files and sub-directories, enabling hierarchical
organization and efficient file management.

A directory is a special type file used by a file system to store metadata about files and
other directories. It acts as a catalog or index for files, enabling users to locate, organize,
and access data.

Directory entries
A directory file contains entries referred as directory entries. Each entry in a directory
contains information about a file or sub-directory such as filename, Inode or metadata that
links to a file attributes, type (regular file, directory, symbolic link, etc.).

Types of directory structures

Operating systems (OSes) 49

File system can implement directories in different structures, ranging from simple flat
layouts to complex hierarchical.

1. Single-level directory: organizes all files into a single flat directory.

Pros: simplicity, efficient access.

Cons: name conflicts, poor scalability.

2. Two-level directory: provides a separate directory for each user. Root directory
contains sub-directories for each user.

Pros: less name conflicts, improved organization.

Cons: limited sharing, scalability issues.

3. Tree-structured directory: organizes directory and files hierarchically. forming a tree-
like structure. The root / is the starting point. Sub-directories can contain files or
other directories.

Pros: efficient organization, scalability, file sharing via hard and soft links.

Cons: complexity, path dependency: files must be accessed using a full path unless
current working directory is set.

4. Acycle graph directory: allows directories and files to have multiple paths, supporting
file sharing. Implements links (hard and soft) to allow multiple references to a the same
file of directory. Ensure no cycles are formed in the graph.

Pros: efficient sharing, space efficiency.

Cons: complex maintenance, link breakage.

5. General graph directory: allows directories and files to form a general graph where
cycles can exist.

Pros: maximum flexibility, , efficient sharing.

Cons: cycle detection, high complexity.

Mounting file systems
Mount / Unmount file system
Mounting is a process of making a file system accessible to the OS and its users by
attaching it to a directory in the existing file system hierarchy. Once mounted, the content
of the mounted file system appear as they are part of the main file system.

Steps to mount a file system:

1. Locate the file system: identify the storage device or or partition that holds the file
system (e.g., /dev/sda1).

2. Specify a mount point: choose an empty directory in the file system where the new file
system will be attached (e.g., /mnt or /media/usb).

Operating systems (OSes) 50

3. Perform the mount: the OS integrates a new file system into the directory tree. (e.g.,
mount /dev/sda1 /mnt).

Types of mounts:

1. Temporary mount: the file system is mounted for the current session and is unmounted
on reboot.

2. Persistent mount: the file system is configured to mount automatically at boot time,
typically via entries in /ets/fstab in Linux.

Unmounting a file system:

1. Stop any processes that use the file system.

2. Unmount umount in Linux.
File sharing
File sharing refers to the ability of multiple users, devices or processes to access files
concurrently. This can occur locally on the same system or across a network.

Types of file sharing:

1. Local sharing: multiple users on the same machine.

2. Network sharing: Network File Systems, Samba.

File sharing methods:

1. Shared directories: users with appropriate permissions can share files in a common
directory.

2. Symbolic links: link points to shared file stored elsewhere in the file system.

3. Distributed file systems: NFS, SMB.

Remote file systems
Remote file systems allow files stored on one machine to be accesses and manipulated by
another machine over a network as they were local.

Key protocols and technologies:

NFS (Network File System): mount -t nfs /server:shared /mnt .

SMB/CIFS (Server Message Block, Common internal file system): Commonly used for
sharing on Windows machines. Supported on Linux via Samba.

AFS: scalable with strong authentication.

Space allocation
Introduction
Space allocation strategies determine how the file system organizes and stored file’s data
blocks in a disk.

Operating systems (OSes) 51

Contiguous allocation
A file’s data blocks are stored in consecutive location on the disk.

The file system allocates a single, contiguous range of disk blocks for the entire file.

Metadata: stores the starting block address and the length of the file.

Pros:

Fast access science all blocks are allocated contiguously.

Straightforward random access. Address = starting block + offset.

Simple implementation.

Cons:

External fragmentation.

File growth issues. If a file grows beyond its allocated space, reallocation of a file to
another contiguous region is costly (O(n)).

Linked allocation
A file’s data blocks are scattered across the disk and linked using pointers.

Each file block contains the file data, and a pointer to the next block in the sequence
(or a NULL pointer if the block is the last one).

Pros:

Dynamic allocation reduces fragmentation.

File growth dynamically without the need for reallocation.

Cons:

Slow random access (O(n)).

Pointer overhead: pointers consume additional storage space.

Reliability: if a pointer is corrupted, the file chain may break, causing data loss.

Indexed allocation
A file system maintains an index block that contains pointers to all the file’s data blocks.

The index block stores an array of pointers, each pointing to a data block of the file.

Metadata includes the locations of the index block.

Pros:

Fast access.

Support large files.

Cons:

Operating systems (OSes) 52

Overhead: index block consuming additional space.

Limited file size. A file cannot be larger than there are pointer to different blocks in the
index block.

Variations:

1. Single-level indexing: one index block per file.

2. Multi-level indexing: entries in one index block can point to another index block,
allowing large files.

3. Combined scheme (e.g., UNIX Inodes): uses direct pointers, single-level, and multi-
level indexing.

Comparison of allocation strategies

Feature Contiguous Linked Indexed

Access speed Fast (seq/random)
Slow (sequential
only) Fast (random only).

Space utilization Poor (fragmentation) Good Good

File growth support Poor (reallocation) Good Excellent

Overhead Low Moderate (pointers) High (Index blocks)

Reliability High
Low (pointer
corruption) High

File System Drivers
Introduction
A file system driver (FSD) is a special software module that acts as interface between the
OS and a specific file system. It enables the OS to read from, write to, and manage storage

devices formatted with various file systems.

Key characteristics:

1. File system-specific: each file system typically requires a dedicated driver.

2. Kernel module: in most modern OSes, FSD are implemented as kernel modules for
efficient integration with the storage stack.

3. Abstraction: FSD abstracts the details of the file system providing a unifies interface
foe file operations.

Role of file system drivers:

File system management.

File operations: read, write.

Metadata handling.

Disk space management: handle space allocation, fragmentation.

Operating systems (OSes) 53

Error handling.
Architecture of file system drivers
The architecture of file system drovers integrated with the OS kernel and the I/O
subsystem.

Layers in file system management:

1. Application layer: user-layer applications issue file operations through system calls
(e.g., read() or write() , etc.).

2. Virtual file system (VFS): a kernel module that provides a uniform interface for file
operations, regarding of the underlying file system. Translates generic operations into
file system-specific calls.

3. File system driver (FSD): implements file system specific logic, interacting with
storage medium based in the file system format.

Example:

ext4 driver for ext4 file system.

ntfs-3g driver for NTFS in Linux.

4. Block device driver: manages communication with the physical storage device (e.g.,
SSD, HDD) by handling blocks of data.

Types of file system drivers
Native FSD: provided by the OS to support default file systems.

Third-party FSD.

Network FSD: enable remote file systems to be mounted and accesses as there were
local.

Virtual FSD: represents file system that do not rely on physical storage. Example:
procfs , tmpfc in Linux.

Processes and Threads (Process management)
Processes

Process management in Linux

Definition

Key characteristics:

Process attribute State (process state):
Each process has the state attribute, which can be checks at HTOP.

Operating systems (OSes) 54

1. Running / Runnable (R): running is using CPU at the moment. Runnable is the process
that is expecting to get CPU time.

2. Uninterruptible Sleep (D): Process is waiting for the I/O operation to finish (this
process cannot be killed).

3. interruptible Sleep (S): Process is waiting for an event (e.g., user input) and does not
utilize the CPU time.

4. Stopped (T): Process has received the SIGSTOP or SIGTSTP and stopped working. (Can
be resumed by calling SIGNCONT .

5. Zombie (Z): Process has received the kill signal, and it’s terminated.
Operation on processes - Process creation
A process can create several new processes, via a create-process system call, during the
course of execution.

The created process is called “parent process”, and created process are called “children
processes”. Each of child processes can create its own processes forming a tree of
processes.

To check the full tree in Linux run the pstree command.

When a new process is created there are two possible ways of execution:

1. The parent process continues to execute concurrently with its children.

2. The parent process waits for their children process to complete.

And there are two possible ways of managing address space:

1. The child process is a duplicate of its parent, hence the child process has the program
and data.

Example of process a tree (Ubuntu 22.04)

Operating systems (OSes) 55

2. The child process has a new program loaded into it.
Operation on processes - Process termination
Standard process termination:

1. A process terminates when it finished its final statement and asks the OS to delete it by
using the exit() system call.

2. After the exit() system call was called the process returns a status value (usually an
integer) to its parent process.

3. All the resources of the process — including physical and virtual memory, open files,
and I/O buffers — are freed (deallocated) by the OS.

Killing a process (explicitly terminating) by making a certain system call:

One process can terminate another process via an appropriate system call. This type of
system calls only might be invoked only by parent processes or privileged processes (e.g.,
root process that is being executed in a kernel mode.).

A parent may kill its child processes in such cases as:

The child has exceeded its usage of some of the resources that has been allocated.
(To determine whether it has been occurred the parent must have a mechanism to
inspect the sate of its children.).

The task assigned to the child is no longer required.

The parent itself terminates. (only on some OSes).

Process state during execution scheme
A process has several states in its life cycle:

New: newly created process.

Ready: process is waiting for CPU time.

Running: the process is being executed right now.

Waiting: the process is waiting for a signal or I/O to complete.

Terminated: the process is being destroyed by the OS.

Operating systems (OSes) 56

Threads
Thread in a basic unit of CPU utilization. Each thread has Thread Control Block, similar to a
process. In Linux thread even use the same data structure as processes called task_struct . A
thread shares its resources (code section, data section and other OS resources as open files
and signals) with other thread within the same process.

A traditional (heavyweight) processes has a single thread of control. If a process has multiple
threads of control, it can perform more than one task at a time.

Single threaded process
One process has one thread. A sing-threaded process run on only one CPU (CPU cores).
No matter how many CPUs (CPU cores) are available.

Process state during execution.

Single threaded process.

Operating systems (OSes) 57

Multi-threaded process
Each of threads within one process have its own registers and stacks. Multiple tasks can
be performed at a time with the help of these threads. Therefore, multi-threaded
processes are more efficient than single threaded processes.

Benefits of multi-threaded processes
The benefits of multi-threaded processes can be broken into four major categories.

1. Responsiveness: multi-threading allows application to run even if one part of the
application is blocked or performing a long running operation, thereby increasing
responsiveness to the user.

2. Resource sharing: By default, threads share memory and the resources of the process
they belong to. The benefit of sharing code and data is that it allows an application to
have several different threads of activity within the same address space. So there is no
need to think about data exchange between threads.

3. Economy: Allocating memory and resources for a process is costly. Threads are less
expansive to create in comparison to processes, as creating a new thread the OS does
not need to create another memory space address, and load data to it.

4. Utilizing multi-processor architecture: The benefits of multi-threading can be greatly
increased in multi-processor architectures, where thread may be running in parallel on
different processors (CPU cores). A single-threaded process can run only ob on CPU,
no matter haw many are available. Multi-threading on a multi-CPU machine increases
concurrency.

Types of threads

Multi threaded process.

Operating systems (OSes) 58

This topic covers software threads, bot not CPU thread also knows a logical processors.

Software threads are created and managed by the Operating System or a program, and they
are scheduled by the OS to run on CPU threads (logical processors).

In modern OSes the relationship model between user threads and kernel threads is primarily
determined by the OS. The OS kernel implements a specific threading model, and software
engineers cannot change it directly.

By the way, Linux uses one-to-one relationship model between kernel thread and user
threads.

User-threads

Threads hierarchy in OSes.

Operating systems (OSes) 59

User threads supported above kernel threads and managed without kernel support (OS
scheduler).

User threads are not directly visible to the OS. The OS only knows about the kernel
threads. User threads execution flow is controlled by a programmer by utilizing third party
libraries such as POSIX .

Only some languages libraries allow thread creating to form one(kernel)-to-many(user)
threads (example asyncio from Python). These user thread (also, known as green threads
or coroutines) are manages entirely in user space, and the OS is not aware of them. These
threads are mapped to one kernel thread.
Kernel-threads
Kernel threads are fully managed by the OS scheduler. These threads are visible to the
OS, and the OS kernel decides when each kernel thread runs on the CPU. Each kernel
thread is treated as a separate task, and the OS applies its scheduling algorithms (like CFS
in Linux) to manage their execution.

Multithreading models and Hyperthreading
Ultimately, there must be a relationship between user threads and kernel threads.
Multithreading models are type of relationship that can be between user threads and kernel
threads.

Many-to-One
Characteristics:

Many user threads are accessing one kernel thread.

User thread management is done by thread management libraries is user space.

Downsides:

The entire process can be blocked if a thread makes a blocking system call.

Because only one user thread can access the kernel kernel at a time, multiple user
thread are unable to run in true parallel on multiprocessors (different CPU thread / CPU
logical processors).

One-to-One
Characteristics:

Maps each user thread to a kernel thread.

Provides more concurrency than many-to-one model by allowing another thread to run
when a thread makes a blocking system call.

Allow true parallelism in multiprocessor systems.

Downsides:

Creating a user thread requires creating a corresponding kernel thread.

Operating systems (OSes) 60

Because the overhead of creating kernel threads can be burden the performance of an
application. Most implementations of this model restricts the number of thread
supported by the system.

Many-to-Many
Characteristics:

Multiplexes many user-level threads to a small of equal number of kernel threads.

The number of kernel threads may be specific either a particular application or a
particular machine.

Developers can create as many user thread as needed, and corresponding kernel
threads can run in parallel on multiprocessor systems.

When a thread performs a blocking system call, the OS can schedule another kernel
thread to execute.

Downsides:

Complex development.

Hyperthreading (simultaneous multithreading SMT)
Simultaneous multithreading is a technique when CPU producers design processors (CPU
cores) architecture the way that a single processor (CPU core) is able to execute two or
more sets of instructions at the same time (in parallel).

The OS sees hyperthreaded processors (CPU thread / logical processors) as independent
processors.

Hyperthreading system allow their processor cores resources to become multiple logical
cores for performance.

It enables the processor (CPU core) to execute two thread, or set of instruction) at the
same time. Since hyperthreading allows to stream to be executed at the same time (in
parallel), it is almost like having two separate processors (CPU cores) working together.

Run a program on a specific logical processor (CPU thread)
It is possible to run an executable code on a predefined CPU thread (logical processor).

Thread affinity allows to “pin” a specific software thread to run on a particular CPU core
(logical processor / CPU thread). This is done by using system calls like schd_setaffinity() in
Linux or tools like taskset .

taskset -c 0 ./my_program

Control Blocks (PCB / TCB)
Process Control Block (PCB)

Operating systems (OSes) 61

Processes and threads are managed through a specialized data structures. These data
structures help to track all the information about processes and threads that is required to
manage their execution.

Process Control Block (PCB) is a data structure maintained by the OS for every process. It
contains all the important information about a specific process, allowing the OS to manage
and control the process during its life cycle (new, read, running, I/O waiting, terminated).

Information stored in PCB:

PCB field Description

Process ID (PID): Unique identifier of a process.

Process State: The current process state (e.g., ready, …).

Program Counter (PC): Pointer to the next instruction to be executed.

Memory management information:

Information about the process’s memory.
E.g., pointers to it’s page table, or segment
table, memory regions (text, data, heap,
stack).

Priority: Priority of the process, which influences the
CPU scheduler.

CPU scheduling information: CPU scheduling queue information, nice
value, CPU burst time, etc.

I/O status: List of I/O devices allocated to the specific
program.

Process Control Block in Linux
PCB in Linux:

In Linux, the information for each process is stored in a kernel data structure called
task_struct , which acts as the PCB. This structure contains all the necessary fields to
manage processes.

Example: task_struct (Linux PCB):

struct task_struct {

// Process ID

 pid_t pid;

 // Process state (running, waiting, etc.)

 long state;

 // Pointer to memory information

 struct mm_struct *mm;

 // Scheduling information

 struct sched_entity se;

 // Pointer to open file descriptors

 struct files_struct *files;

Operating systems (OSes) 62

 // Signal handling information

 struct signal_struct *signal;

 // ... (many more fields)

};

In this example:

pid : The process ID.

state : The current state of the process (e.g., TASK_RUNNING , TASK_INTERRUPTIBLE).

mm : Points to the process's memory map (mm_struct), which stores information about
the process's address space (code, data, stack).

files : A list of open file descriptors for the process.

sched_entity : Information related to CPU scheduling (priority, time slice, etc.).
Thread Control Block (TCB)
A Thread Control Block (TCB) is similar to a PCB, but it contains thread-specific
information. Threads are lightweight units of execution that share the same resources (like
memory and open files) within a process. Each thread has its own TCB to manage its
execution state.

Key Functions of TCB:

The TCB allows the OS to track and control individual threads.

It stores thread-specific data, such as the thread's program counter, stack pointer,
and registers.

It ensures that each thread can be paused and resumed independently of other
threads within the same process.

TCB field Description

Thread ID (PID):
Unique identifier for the thread (within the
process).

Thread State:
The current state of the thread (e.g., running,
waiting, terminated).

Program Counter (PC):
Points to the next instruction to be executed
by the thread.

Stack Pointer:
Points to the thread's stack, which is unique
for each thread.

CPU Registers:
The contents of CPU registers used by the
thread.

Priority:
The priority of the thread for scheduling
purposes.

Operating systems (OSes) 63

TCB field Description

Thread Context: The current execution context of the thread
(e.g., general-purpose registers).

Parent Process Info: Information about the parent process to
which the thread belongs.

Signal Mask: Mask to determine which signals are blocked
for this thread.

Thread Control Block in Linux
In Linux, threads are treated similarly to processes, and task_struct also serves as the
TCB. Threads in Linux are represented as tasks (lightweight processes), and each thread
has its own task_struct entry.

Linux assigns both processes and threads a PID (Process ID). However, threads are
also given a TID (Thread ID), which differentiates them from other threads within the
same process.

Example of TCB in task_struct (Linux):

Linux doesn't have a separate structure for TCBs because threads are treated as tasks.
Therefore, both the processes and threads share the same task_struct structure in Linux.

For threads:

TID (Thread ID) is stored in the pid field of the task_struct .

Thread-specific information like the program counter, stack pointer, and CPU registers
is stored just like in processes, but multiple task_struct entries will point to the same
shared resources (e.g., memory, file descriptors).

System calls fork() , exec() .
System call fork() .
The fork() system call is used by a parent process in order to crate a separate, duplicate
child process. The newly create child process is going to have a different process ID (PID)
from its parent process.

#include <stdio.h>

#include <sys/types.h>

#include <unistd.h>

int main ()

{

 fork(); // Create child process.

 fork(); // Create child process.

 fork(); // Create child process.

 printf("Hello FORKS! PID=%d\n", getpid());

Operating systems (OSes) 64

 return 0;

}

System call exec() .
When the exec() system call in invoked, the program specified in the parameters to
the exec() system call will replace the entire process — including all threads. In this case
the process will not change its ID (PID), because the exec() system call replaces the
process (code, data, file descriptors, PC, registers, etc) but does not create a new
process.

Example of exec() usage.

PS: exec() has many implementations and one of them if execv() , this implementation
enables to pass vector of arguments.

#include <stdio.h>

#include <sys/types.h>

#include <unistd.h>

int main (int argc, char* argv)

{

 printf("PID of exec1=%d\n", getpid());

 char *args[] = {"Hello", "exec", "!", NULL};

 execv("./compiled/exec2", args);

 printf("Back to exec1\n");

 return 0;

}

#include <stdio.h>

#include <sys/types.h>

#include <unistd.h>

int main (int argc, char *argv[])

{

 printf("We are now in exec2.c PID=%d\n", getpid());

 return 0;

}

Note, the semantics of fork() and exec() system call change in multithreading programs.

Semantics of fork() system call in multithreaded programs
In single threaded programs, the fork() system call creates a child process that a full
duplicate of the parent process. It inherits all of the parent’s memory, file descriptors, and
other resources. Essentially, the child process is an exact copy of a parent process, but
they both continue executing independently after the fork() .

Operating systems (OSes) 65

However, in multithreaded program, semantics change because there are multiple threads
within a parent process, and the behavior of fork() need an account for that.

When fork() is invoked in multithreaded process, only the calling thread is duplicated in
child process. The other threads in the parent process are not copied to the child process.
This has several consequences:

Parent Process: Continues execution as usual with all of its threads.

Child Process: Only has the thread that invoked fork() ; the other threads from the
parent do not exist in the child.

This behavior might cause issues:

The child process might not be in a consistent state if parent threads were
manipulating shared data. Since, only one on parent threads are duplicated, it is
possible that the child process could inherit data that is partially modified or in an
inconsistent state due to other thread that were in the middle of their operation.

Since other threads are not copied, any resources that they were holding (like file
descriptors, locks, etc.) are not duplicated in the child process, which can lead to
deadlocks or undefined behavior if the child process tries to access them.

Semantics of exec() system call in multithreaded programs
In a single-threaded process (program), exec() simply replaces the process image with a
new program, and execution continues in the new program.

In multithreaded process (program), when one of the thread calls exec() , following occurs:

1. All threads are terminated: Before the new program (executable) is loaded, the kernel
terminates all threads except the one calling exec() . This is because the new program
is single-threaded initially (it starts with only one main thread).

2. The calling thread’s memory space and other resources are replaces with the new
program’s code and data.

3. After the exec() call, the new program executes as if it were a single-threaded process.

This behavior might cause issues:

If one of a multithreaded program’s thread calls exec() all threads will be terminated
(also, known as thread cancellation), and a new program will start in a single threaded
process.

Any other resources held by other threads (looks, open file descriptors, network
connections) may not be properly released if these threads are terminated abruptly by
the exec() call. This could leak to resource leaks or inconsistent system states.

Dealing with fork() and exec() in multithreaded programs
Best practice: Use fork() followed by exec() carefully in multithreaded programs. A
common pattern to cal fork() and right after exec() in the child process. In this case, any

Operating systems (OSes) 66

inconsistent state in child process caused by missing thread is irrelevant because
exec() will replace the entire process anyway.

There are alternatives like posix_spawn() . Which is designed for spawning new processes
and can be safer alternative to fork() and exec() in multithreaded environments, as it
handles some of complexity internally.

Thread cancellation
Threads cancellation is the process when threads are being terminated. The thread that is
going to be cancelled (terminated) often referred as a target thread. There are a few types of
thread cancellation:

1. Asynchronous cancellation: One thread immediately terminated the target thread.

2. Deferred (graceful) cancellation: The target thread periodically checks (special flag)
whether it should terminate, allowing an opportunity to terminate itself in orderly fashion.

Issues to consider cancelling a thread:

When a resources have been allocated to a cancelled thread: When a target thread is
terminated the OS will free system wide resources but might fail free all the resources
(e.g., opened sockets).

A target thread is cancelled while updating data it’s sharing with other thread:

Inter-process communication (IPC)
Introduction
A concurrently executing processes in the OS can either:

Independent processes — They cannot affect or be affected by the other processes
executing in the system.

Cooperating processes — They can affect or be affected be the other processes
executing in the system.

Any process that shares data with other processes is a cooperative process.

Inter-process communication (IPC)

Definition
The inter-process communication mechanism is used when two or more processes need
to share data or send messages to each other.

Inter process communication allows to:

Send and receive messages.

Share data and synchronize execution.

Operating systems (OSes) 67

Why needed ?
Since processes have separate virtual memory address spaces they cannot access to the
shared data directly like threads. However, sometimes processes need to cooperate and
exchange data.

Examples:
1. A web process (process 1) communicates with a db server (process 2) to store or

retrieve data.

2. A parent process (e.g. shell) spawns a child processes and needs to synchronize
them.

When to use ?
Information sharing between processes.

Computational speed up by braking a task into smaller pieces, executing pieces in
parallel and joining the result.

Modularity — designing a system with different modules working together.
Choosing the right IPC mechanism

Pipes: Great for simple parent-child process communication or command-line
piping.

Message Queues: Ideal for asynchronous message passing and more structured
communication.

Shared Memory: The fastest IPC, suitable for sharing large amounts of data between
processes, but requires synchronization (e.g., semaphores).

Semaphores: Used for synchronization between processes, particularly when
accessing shared resources.

Signals: Best for sending asynchronous notifications between processes, like
termination requests.

Sockets: Essential for network communication between processes, either locally or
across a network.

IPC systems
1. Shared memory system
Shared memory allows direct access to the same memory address space by multiple
processes.

Typically, shared memory region resides in the process memory address space which
initializes creation of the shared memory address space. Other processes that wish to
communicate using this shared-memory segment must attach to their address space.

Operating systems (OSes) 68

(Normally, the OS does not allow a process to attach other process memory). Shared
memory requires that two or more process are agreed to remove this restriction.

Buffer sizing:

1. Unbounded buffer: space is dynamically reallocated.

2. Bounded buffer: fixed size.
2. Message passing system
Message passing systems provide a mechanism to allow processes to communicate and
to synchronize actions without sharing the same address space. It is particularly useful in
in distributed environments where communicating process can reside on different
computers connected by a network.

A message passing facility provides two operations: send and receive messages.
Messages sent by a process can be either fixed or dynamic size. Fixed size messages are
easier in development but sometimes not convenient in user and vise versa for the
dynamic size messages.

If a process Q want to communicate with process P, they must send messages to and
receive from each other. A communication link must exist between them.

This link can be implemented in a variety of

Direct or indirect communication.

Synchronous or asynchronous communication.

Automatic of explicit buffering.

2.1 Message passing system direct communication
Direct communication: Each process that want to communicate with other processes
must explicitly tell the name of the recipient process.

// Synchronous

send(P, "Message")

revieve(Q, "Message")

// Asynchronous

IPC Direct communication paradigm scheme.

Operating systems (OSes) 69

send(P, "Message")

revieve(id, "Message")

In this paradigm:

A link is established automatically between between two processes.

Between each pair of processes there is only one link.

Symmetry in addressing. The sender and the receiver must name each other to
communicate.

In asynchronous communication the receiver receives messages from any process.

Main disadvantage of either synchronous or asynchronous direct communication is high
coupling (lack of modularity).
2.2 Message passing system indirect communication
Indirect process communication: The messages are send to end received from an
intermediary (e.g., message broker, socket). An intermediary can be viewed abstractly as
an object into which messages can be places by processes and from which messages can
be removed. Two processes can communicate only if the process es have share
intermediary.

send(intermediary, "Message")

revieve(intermediary, "Message")

In this paradigm:

A link is established between a pair of processes only if they are both have the same
intermediary.

A link may be associated with two or more processes.

IPC indirect communication paradigm scheme (Producer-Consumer model).

Operating systems (OSes) 70

Between each pair of communicating processes, there may be a number of different
links, with each link corresponding to one intermediary.

Receiving messages policy is dependent on a concrete implementation. Following
strategies can be chosen:

Allow at most one process at a time to execute the receive() command.

Implementing collision solving algorithm in the intermediary e.g., Round Robbin, etc.

An intermediary can be owned either by a process or the OS.
2.3 Sync and async communication
In inter-process communication (IPC), synchronous and asynchronous communication are
two primary models for processes to interact with each other.

Synchronous communication: Best for real-time interactions, where immediate responses
are crucial, and the sender process can afford to wait.

Blocking: The sender process waits for the receiver process to acknowledge the
message before proceeding.

Real-time: Communication happens immediately, and the sender is blocked until the
receiver processes the message.

Examples: Remote Procedure Calls (RPC), Pipes, Sockets (with blocking operations)

Asynchronous communication: Best for decoupled systems, where processes can work
independently, and there's no need for immediate responses. This approach is ideal for
high-throughput, distributed systems.

Non-blocking: The sender process doesn't wait for the receiver to acknowledge the
message. It can continue with other tasks.

Message-based: Communication relies on message queues or message brokers.

Examples:

Message Queues.

Sockets (with non-blocking operations).

Signals.

3. Clint-Server Systems
Sockets: Socket is defined as an endpoint for communication. A pair of processes
communicating over a network employ a pair of sockets — one for each process. A socket
is identified by an IP address concatenated with a port number.

The server waits for an incoming client request by listening a specified port. Once, a
request is received, the server accepts a connection from the client to complete the
connection.

Operating systems (OSes) 71

Servers implementing specific services e.g., HTTP server, SSH server, etc..

Connection establishment:

1. When a client process wants to establish a connection, the OS assigns a port to the
process (free port numbers > 1024 > well known port numbers) and the IP address is
concatenated usually automatically.

2. The OS makes a network request to the destination socket.

3. The server receives the request and the process working on the socket is responsible
for processing the connection.

If the same client process wants to connect other sockets the OS assigns different socket
to the same process, hence ope process can have multiple sockets.

Remote procedure (call) systems
Remote procedure system is a form of inter-process communication. in that different to IPC
processes have different address spaces: if on the same host machine, they have distinct
virtual address spaces, even though the physical address space is the same; while if they are
on different hosts, the physical address space is different.

Remote Procedure Calls (RPC)
Remote Procedure Calls (RPC) is a protocol that one program can use to request a service
from a program located in another computer or network without having to understand the
network’s details. Because RPC is dealing with processes that are executing on separate
systems, the message passing communication scheme must be used.

RPC workflow
Each message is addressed to an RPC daemon listening to a port on the remote system,
and each contains an identifier of the function to execute and the parameters to pass to
that function.

The function is executed as required, and any output is send back to the requester in a
separate message.

Semantics of remote calls
The semantics of RPC allow a client to invoke a procedure on a remote host as it would
invoke a procedure locally.

Steps:

1. The RPC system encapsulates the details that allow communication to take place b
providing a stub on the client side. Typically, a separate stub exists for each separate
remote procedure.

2. When a client invokes a remote procedure, the RPC system calls the appropriate stub,
passing it the parameters provided to the remote procedure. The stub locates the port

Operating systems (OSes) 72

on the remote system and marshes the parameters. Each service is identifies by a
separate port number.

3. Parameters marshaling involves packaging the parameters into a form that can be
transferred over a network.

4. The stub transmits a message to the server using message passing system.

5. A similar stub on the remote server receives the message and invokes the procedure
on the server.

6. If necessary, return a values are passed back to the client using the same technique.
Common issues using RPC
Using Remote Procedure Call might go together with some common issues.

List of issues:

1. Issue: Different in Data representation between client and server machines.

Example: representation of 32-bit integer. Some machines (known as big-endian) use
the high memory address to store the most significant byte, while the other systems
(known as little-endian) store the least significant byte in the high memory address.

Solution: RPC systems define a machine-independent representation on data. One
such data representation is known as external data representation (XDR). On the client
side, parameter marshaling involves converting the machine dependent data into XDR
before they are send to the server. On the server side, the XDR data are unmarshalled
and converted to machine-dependent representation for the server.

2. Issue: Whereas local procedure calls might fail under extreme circumstances, RPCs
can fail, or be duplicated and executed more then once, as a result of common
network mistakes.

Solution: The OS must ensure that RPCs are executed exactly once, rather than at
most once. Most RPC have exactly one functionality. Implementing the
acknowledgement system.

3. Issue: RPC client does not know the binding of the RPC port number on the server.
Hence, how the client knows on the port to call in order to call an appropriate
procedure call ?

Solution 1: The binding information is predetermined, in the form of fixed port numbers
during program (RPC stub) compilation. Therefore, the server cannot change port
numbers during the runtime. (This solution is less flexible).

Solution 2: Dynamically port number binding using rendezvous mechanism. Typically,
OSes provide rendezvous mechanism (also called a matchmaker) daemon on a fixed
RPC port. A client sends a message containing the RPC name to the rendezvous
daemon requesting the port number of the RPC it needs to execute, and the RPC calls
can be send to that port until the process terminates (or the server crashes). Even, if

Operating systems (OSes) 73

the port number changes the rendezvous daemon will always help the client to find the
right port number. (This solution is more flexible).

Types (with C examples)
There are several IPC mechanisms in Linux (and most other Unix-based OSes). They vary in
how they work, their complexity,

Pipes
Pipes: Pipes are one of the simplest and most commonly used IPC mechanisms. They
provide a unidirectional communication channel between processes, where one process
writes data to the pipe and another reads from it.

Key characteristics:

1. Anonymous pipes are created within the same process or between a parent and child
process.

RPC workflow with rendezvous mechanism.

Operating systems (OSes) 74

2. They are commonly used in command-line operations to pass data between
processes. Example: ls | grep "txt" the | means a pipe between two processes “ls”
and “grep”.

Example in C:

#include <stdio.h>

#include <unistd.h>

int main() {

 int fd[2];

 pipe(fd); // Create a pipe

 if (fork() == 0) {

 // Child process

 close(fd[0]); // Close reading end

 write(fd[1], "Hello from child\n", 17);

 close(fd[1]);

 } else {

 // Parent process

 close(fd[1]); // Close writing end

 char buffer[100];

 read(fd[0], buffer, sizeof(buffer));

 printf("Parent received: %s", buffer);

 close(fd[0]);

 }

 return 0;

}

A pipe is created between the parent and child processes.

The child writes a message to the pipe, and the parent reads it.

Named pipes:

Named pipes (FIFOs) are similar to anonymous pipes but exist as files in the
filesystem, making them useful for communication between unrelated processes.

Named pipes allow communication between processes that do not share a parent-
child relationship. mkfifo mypipe # Create a named pipe .

Message Queues
Message Queues: allow processes to exchange messages in a queue. Unlike pipes,
message queues support:

1. Asynchronous communication (messages can be sent and read at different times).

Operating systems (OSes) 75

2. Multiple messages with different types.

Key characteristics:

1. Messages are queued in a first-in, first-out (FIFO) manner.

2. Processes can send and receive messages without blocking.

Example in C:

To use message queues in Linux, the System V IPC API provides system calls like
msgget() , msgsnd() , and msgrcv() .

#include <sys/ipc.h>

#include <sys/msg.h>

#include <stdio.h>

struct message {

 long msg_type;

 char msg_text[100];

};

int main() {

 key_t key = ftok("queuefile", 65);

 int msgid = msgget(key, 0666 | IPC_CREAT);

 struct message msg;

 msg.msg_type = 1;

 sprintf(msg.msg_text, "Hello from message queue");

 msgsnd(msgid, &msg, sizeof(msg), 0);

Usage of Message Queue scheme

Operating systems (OSes) 76

 printf("Message sent: %s\n", msg.msg_text);

 msgrcv(msgid, &msg, sizeof(msg), 1, 0);

 printf("Message received: %s\n", msg.msg_text);

// Destroy message queue

 msgctl(msgid, IPC_RMID, NULL);

 return 0;

}

Shared Memory
Shared Memory: is the fastest form of IPC because it allows direct access to the same
memory space by multiple processes. Instead of passing data through pipes or messages,
processes can read and write to a shared memory segment.

Key characteristics:

1. Fastest IPC because no data needs to be copied between processes.

2. Ideal for large amounts of data..

3. Requires synchronization (e.g., using semaphores) to avoid race conditions.

Example in C:

#include <sys/ipc.h>

#include <sys/shm.h>

#include <stdio.h>

#include <string.h>

Usage of shared memory scheme

Operating systems (OSes) 77

int main() {

 key_t key = ftok("shmfile", 65);

 int shmid = shmget(key, 1024, 0666 | IPC_CREAT);

 char *str = (char*) shmat(shmid, (void*)0, 0);

 strcpy(str, "Hello from shared memory");

 printf("Data written: %s\n", str);

 // Detach from shared memory

 shmdt(str);

 // Destroy the shared memory

 shmctl(shmid, IPC_RMID, NULL);

 return 0;

}

In this example:

1. Shared memory is created using shmget() , and a process attaches to it with shmat() .

2. Processes can directly read from and write to the shared memory segment.
Semaphores
Semaphores: are used for synchronization between processes. They are not designed to
exchange data, but to coordinate access to shared resources and avoid race conditions in
shared memory.

Key characteristics:

1. Semaphores maintain a counter that tracks access to shared resources.

2. Processes can wait for a semaphore (decrease the counter) or signal it (increase the
counter).

Example in C:

#include <sys/ipc.h>

#include <sys/sem.h>

#include <stdio.h>

int main() {

 key_t key = ftok("semfile", 65);

 int semid = semget(key, 1, 0666 | IPC_CREAT);

Operating systems (OSes) 78

 // Initialize semaphore value to 1

 semctl(semid, 0, SETVAL, 1);

// Wait operation

 struct sembuf p = {0, -1, 0};

 // Signal operation

 struct sembuf v = {0, 1, 0};

 semop(semid, &p, 1); // Wait (lock)

 printf("Critical Section Start\n");

 sleep(2);

 printf("Critical Section End\n");

 // Signal (unlock)

 semop(semid, &v, 1);

// Remove semaphore

 semctl(semid, 0, IPC_RMID);

 return 0;

}

In this example:

A semaphore is used to control access to a critical section, ensuring that only one
process enters the section at a time.

Signals
Signals: are a way for processes to send notifications to each other or to themselves. A
signal is a simple asynchronous notification that tells a process to perform some action
(e.g., terminate, pause, or handle a custom event).

Key characteristics:

1. Signals are used to notify a process about asynchronous events (e.g., division by
zero, termination requests).

2. A process can catch and handle signals using signal handlers.

Common Signals in Linux:

SIGKILL : Terminates a process immediately.

SIGTERM : Requests a process to terminate gracefully.

SIGINT : Sent when a user interrupts the process (e.g., pressing Ctrl+C).

Example in C:

Operating systems (OSes) 79

#include <stdio.h>

#include <signal.h>

void handle_signal(int sig) {

 printf("Caught signal %d\n", sig);

}

int main() {

// Register signal handler for SIGINT

 signal(SIGINT, handle_signal);

 while (1) {

 printf("Running... Press Ctrl+C to stop.\n");

 sleep(1);

 }

 return 0;

}

In this example:

The process registers a signal handler for the SIGINT signal (triggered by Ctrl+C),
which allows the process to handle the signal gracefully.

Sockets
Sockets: are a mechanism for network-based IPC. They enable communication between
processes on the same machine or different machines over a network (using protocols like
TCP/IP or UDP).

Key characteristics:

1. Sockets are bidirectional and can be used for both local IPC and network
communication.

2. Commonly used in client-server models.

Example in C:

A typical client-server program using sockets involves the following steps:

1. Server creates a socket, binds to a port, listens for connections, and accepts a client.

2. Client connects to the server and exchanges data.

#include <stdio.h>

#include <sys/socket.h>

#include <netinet/in.h>

Operating systems (OSes) 80

int main() {

 int server_fd = socket(AF_INET, SOCK_STREAM, 0);

 struct sockaddr_in address = {AF_INET, htons(8080), INADDR_ANY};

 bind(server_fd, (struct sockaddr*)&address, sizeof(address));

 listen(server_fd, 3);

 int client_fd = accept(server_fd, NULL, NULL);

 char *message = "Hello from server";

 send(client_fd, message, strlen(message), 0);

 close(client_fd);

 close(server_fd);

 return 0;

}

Multiprogramming and Multitasking (time sharing)
Introduction

Multitasking in single processor systems
In a single-processor system only one processor can execute a program (set of
instructions) at a time. When a program is waiting for some I/O operation to be completed
the CPU is blocked by the program, and does not complete any useful job, just being idle.

Multitasking allows to distribute valuable CPU time among all tasks (processes) by utilizing
some data structures and CPU time planning algorithms for each task individually.

Multitasking in multiprocessor systems
In multiprocessor system the CPU scheduler plays crucial role by distributing task no only
among a singe CPU, but among all CPU cores (processors).

Note: OS sees every logical processor (CPU thread), as a single independent processor.

Main idea
The main Idea behind multitasking is the CPU time must be utilize properly between all
tasks.

Components of the OS scheduling process
1. Task (Process / Kernel Thread): A single unit of execution.

a. Process Control Block:

i. PID.

ii. Program Counter.

Operating systems (OSes) 81

iii. Machine Code.

iv. Data.

v. etc…

2. Task schedulers:

a. Long-term scheduler.

b. Medium-term scheduler.

c. Short-term scheduler.

d. Dispatcher.

3. CPU processor (logical processor / CPU thread).
CPU and I/O burst cycles
A process execution consists of two states:

CPU Execution state: The machine instructions are being executes at a time.

I/O wait state: The process is waiting for some data to be written or received in order
to continue execution. It this time the program instruction are not being executes.

Process execution cycle.

In a final CPU burst there is a system request to terminate execution of the process.

Components of the OS Scheduler
1. Long-term scheduler (Job Scheduler)

Role: The long-term scheduler is responsible for deciding which processes (jobs) to
admit into system for execution. When a program starts (like launching application),

Process execution cycle (CPU burst, I/O burst).

Operating systems (OSes) 82

the long-term scheduler decides whether the process should be loaded into memory
or kept waiting (especially in systems with limited resources).

When: It operates infrequently because process creation is relatively rare compared to
other scheduling events.

Tasks:

Decide which processes are loaded into memory for execution.

Creates the Process Control Block (PCB), which holds the essential information
about the process (like PID, Program Counter, State, etc.).

Example: “User start a new program, the long-term scheduler decides to create a PCB
for this program and admits it into the system for execution”.

2. Medium-term scheduler (Swapping Manager)
Role: This scheduler is responsible for memory management and sometimes swapping
processes in and out of the main memory. If a system is running low on memory, the
medium-term scheduler will decide to suspend or swap out a process to free up
space, and then swap it back later when memory becomes available.

When: Operates occasionally, when memory needs to be freed up.

Tasks:

Temporary removes (swaps out) processes from memory is the file system is
overloaded, and brings them back later.

Manages processes that are waiting (int the blocked state) until they are ready to
run again.

3. Short-term scheduler (CPU scheduler)
Role: The sort-term scheduler is responsible for deciding which process gets the CPU
next. It works with ready queue, a queue of processes that are ready to run (runnable)
(in ready state) and selects one based on scheduling algorithm (e.g. CFS, RR, Priority
Scheduling, etc.).

When: Operates frequently, typically every few milliseconds (on every context switch).

There are four circumstances of context switching. When a process switches:

1. From the running state to the waiting state.

2. From the running state to the ready state (e.g, when an interrupt occurs).

3. From waiting the waiting state to ready state (e.g, I/O completion).

4. When a process terminates.

Tasks:

Chooses the next process from the ready queue and gives it the CPU.

Operating systems (OSes) 83

Works at the level of kernel threads.

Relation to PCB: The sort-term scheduler uses the Process Control Block (PCB) to
access the state (like registers, program counter, etc) of the next process to run.

4. Context switcher (Dispatcher)
Role: The dispatcher is the components responsible for performing the context switch.
After the short-term scheduler selects the next process to run, the dispatcher takes
over and loads the process’s state (PCB) into the CPU registers. It perform the actual
switching of execution form one process to another.

When: Every time the process switch happens. The time it take to switch the context is
known as dispatch latency.

Tasks:

Loads the next process’s context (registers, program counter, etc.) into the CPU.

Performs the context switching so selected process could run on CPU processor
(hardware).

5. CPU (Hardware)
Role: The actual physical CPU executes the machine instructions of the process. The
CPU has multiple cores and each core has a logical processor (CPU thread), which
execute the machine instructions.

When: Constantly executing instructions.

Tasks:

Execute the instructions of the currently running process.

Task scheduling step-by-step
When a new application is being launched the OS make following steps to launch and execute
the application (program):

1. Long-term Scheduler:

What it does: when a new program starts, the long-term scheduler decides to admit
the process into the system, initializes the Process Control Block (PCB), and allocates
resources (like memory).

Result: The process is now in the ready queue, waiting to be scheduler by the short-
term scheduler.

2. Medium-term scheduler:

What it does: If there is a memory shortage, the medium-term scheduler swaps out
some processes and may bring them back when memory is available. This component
manages processes that are swapped or blocked.

Operating systems (OSes) 84

Result: It ensures efficient use of memory by managing process suspension and
resumption.

3. Short-term scheduler (CPU scheduler):

What it does: selects the next process (kernel thread) to execute from the ready
queue, using the system scheduling algorithm.

Result: The selected process’s PCB is passed to the dispatcher to perform the context
switch.

4. Context switching (Dispatcher):

What it does: The dispatcher loads the process’s state form the PCB into the CPU’s
register and switches the CPU processor to execute the selected process.

Result: The selected process begins to execute on a CPU thread (logical processor).

5. Execution on CPU thread (logical processor):

What it does: Execute the machine instructions of the process selected by the short-
term scheduler and switched by the dispatcher.

Result: The process runs on physical CPU, executing it’s code until its preempted,
completed or blocked.

Process flow scheme
When a running task stops being executed (e.g., waiting for I/O operation to be done) the
scheduler swaps the task to a task that is ready to execute, and putting the I/O waiting
task to another data structure (e.g., queue).

Process flow scheme

Operating systems (OSes) 85

Workflow

CPU scheduling
Note: Do NOT confuse CPU scheduling and task scheduling in Operating Systems. Despite of
being related, these are different components with separate purposes in an Operating
Systems.

Introduction
Task Scheduler (often referred to simply as the scheduler): This is a higher-level
concept in the operating system, and its role is to decide which process or task
should be executed by the CPU at any given time. A task can represent a process or a
thread (depending on the operating system).

CPU Scheduler: This is a lower-level part of the task scheduling system. Once the task
scheduler selects a process or thread to run, the CPU scheduler is responsible for
managing the allocation of the CPU (or CPU cores, if we're in a multicore system) to
those tasks.

The term "CPU scheduling" is often used to refer to the entire scheduling process of
assigning CPU resources to different tasks.

In many contexts, both task scheduling and CPU scheduling are considered part of the
same system—but the CPU scheduler is more specifically concerned with how tasks are
mapped to the CPU.

Definition
CPU scheduling is the process by which the OS decides which tasks (processes or
threads) will run on the CPU and for how long. In systems with multiple cores, it also
involves deciding which CPU core will handle each task.

Task scheduling workflow.

Operating systems (OSes) 86

Since CPU time is a finite resource, the operating system needs to carefully manage how it
is distributed among various tasks. This process of assigning the CPU to different tasks is
called scheduling.

Preemptive (forced) multitasking
Preemptive multitasking in Task scheduling
Preemptive scheduling takes place when CPU time can be taken from a process. Usually,
when CPU scheduler follows a preemptive algorithm.

Cooperative (voluntary) multitasking
Cooperative multitasking in Task scheduling
Cooperative scheduling happens in task scheduling takes place under two circumstances:

1. When a process switches from running state to the waiting state.

2. When a process in being terminated.

The CPU time cannot be taken from a process until the process goes to the waiting state
or terminates. Otherwise, its preemptive.

Context switching (dispatching)
Context switching is the process of saving the state of a currently running process or thread
and restoring the state of another process or thread. The OS scheduler decides when to
context switch to give each process or thread its turn to run on the CPU.

The content switching is executed by the dispatcher (a module in the task scheduler).

Steps in context switching
Interrupts cause the OS to change a CPU from its current task and run kernel routine.

1. Save Context: The state of the currently running process or thread is saved in its
PCB/TCB (including the program counter, CPU registers, and other execution context).

2. Restore Context: The OS restores the context of the next process or thread by loading
its saved state from its PCB/TCB.

3. Switch Execution: The CPU starts executing the next process or thread.

The PCB/TCB plays a crucial role in storing the context during a switch so that the OS can
seamlessly resume execution at the point where the process/thread was paused.

Notes:

Context switching is a pure overhead because the system does no useful work during
switching.

The speed of context switching vary from machine to machine, depending on the memory
speed, number of registers that must be copied, and the existence of special instruction.

Typical speed is a few milliseconds.

Operating systems (OSes) 87

Scheduling Criteria
Scheduling criteria are metrics that an OS considers when selecting which task to tun on the
CPU processor, and for how long. These criteria help to design and estimate scheduling
algorithms efficiency.

List of criteria:
1. CPU utilization:

What it means: it measures the percentage of time the CPU is actually busy doing
work (i.e., to idle).

Goal: The scheduling algorithm should try to keep the CPU as busy as possible,
without leaving it idle when there are tasks to be processed.

Ideal outcome: Maximize CPU utilization to approach 100% (though 100% is
unrealistic due to context switches, I/O waits, etc.).

2. Throughput:

What it means: It is the number of processes completed per unit of time (e.g., how
many processes finish in one second).

Goal: The scheduling algorithm should maximize throughput by making sure a high
number of processes finish in a given time period.

Ideal outcome: More processes completed in less time (i.e., higher throughput).

3. Turnaround time:

What it means: The total time taken from the moment a process enters the system
until it is completed (includes all waiting, execution, and I/O times).

Formula: ﻿.

Goal: Minimize turnaround time so processes finish faster.

Ideal outcome: A scheduling algorithm that minimizes the overall time a process
spends in the system (quick response and completion).

4. Waiting time:

What it means: The total time a process spends in the ready queue, waiting to be
scheduled to run on the CPU (does not include execution time or I/O wait time).

Formula: ﻿

Goal: The scheduler should minimize the waiting time of each process in the ready
queue.

Ideal outcome: Shorter waiting times mean less idle time for processes waiting to
execute.

T ​ =turnaround T ​ −completion T ​arival

T ​ =waiting T ​ −turnaround T ​burst

Operating systems (OSes) 88

5. Response time:

What it means: The amount of time it takes from when a request (process) is
submitted until the first response is produced (i.e., until the process starts
executing, not when it completes).

Formula: ﻿.

Goal: For interactive systems (like user applications or GUIs), it's important to
minimize response time to make the system feel fast and responsive

Ideal outcome: The scheduler should ensure processes start executing quickly
after they're submitted, even if they don’t finish right away.

6. Fairness:

What it means: Ensuring that all processes get an equal or fair share of the CPU
time and resources, without starvation (where a process waits forever while others
get CPU time).

Goal: Every process should get some share of CPU time, and high-priority or short
tasks shouldn’t monopolize the CPU.

Ideal outcome: Fair allocation of CPU time to prevent any one process from
starving or being treated unfairly.

7. Context switching overhead:

What it means: A context switch happens when the OS switches the CPU from
running one process to another. This involves saving the state of the current
process and loading the state of the next one.

Goal: Minimize context switch overhead, since context switching takes CPU time
without doing productive work.

Ideal outcome: Efficient scheduling algorithms should minimize the number of
context switches to reduce unnecessary CPU time overhead.

Balancing criteria
In real-world scheduling, some criteria can conflict with others. For example:

Maximizing throughput may increase waiting time for some processes.

Minimizing response time (for interactive tasks) could decrease overall CPU utilization.

Fairness might result in longer turnaround times for some processes.

Because of these trade-offs, different scheduling algorithms prioritize different criteria
depending on the system's needs:

Batch systems (where non-interactive processes run) might prioritize throughput and
CPU utilization.

T ​ =response T ​ −f irstrun T ​arrival

Operating systems (OSes) 89

Interactive systems (like desktop OS or web servers) might prioritize response time
and fairness.

Task scheduling algorithms
Task scheduling algorithm are responsible to tackle following questions:

For how long a process should be executed.

How to determine when a process needs to be swapped.

How to determine after what time a process that had been swapped need to continue its
execution.

etc…

And the efficiency of each algorithm is measured by the scheduling criteria.

Formulas:
1. Task completion time and Task completion timeline:

P = process number.

d = dispatch latency.

b = burst time

Preemptive algorithm:

1. Waiting time = Total waiting time - No of ms. process had completed - Arrival time.

2. Waiting average = sum(processes waiting time) / number of processes.

Non preemptive algorithm:

1. Turnaround time = Finish execution time - arrival time.

2. Waiting time = turnaround time - burst time.

Algorithms:
FCFS (First-Come, First-Served) algorithm
Semantics: The process that request the CPU first gets the CPU time until it’s terminated
or requested I/O. Meanwhile, other processes are waiting for execution in a ready queue.
Consequently, the algorithm is cooperative (non preemptive).

Implementation details:

Data Structure: a simple queue (FIFO).

Scheduling criteria:

T = {t ​ ∣n ​(d +
p=1

∑
p ​n

b)}

Operating systems (OSes) 90

CPU utilization:

Throughput:

Turnout time:

Waiting time: depending on the order and burst time.

Response time: low (average).

Issues:

1. FCFS is not convenient for time sharing systems, where each task needs to be
executed without waiting for too long.

2. Tasks with large burst time can be a bottleneck, because it would significantly increase
the waiting time for other processes.

SJF (Shortest Job First) algorithm
Semantics: the process that will utilize CPU for the shortest period of time (smallest burst
time) will be the first to get the CPU. If these are two or more task have the same burst
time, in this scenario, the FCFS algorithm is used to resolve the collision.

The SJF can be preemptive. In such case, the short-term scheduler can take CPU away
from a running process, when a newly added into the ready queue process has the shorter
burst time that the currently running process. Therefore, a process with the shortest burst
time runs until it terminates or goes to the I/O queue.

Also, SJF can be cooperative. In case where, there are two or more tasks in the ready
queue that have the same burst time.

Note: the SJF is a variation of the priority scheduling algorithm where the priority is
inverse burst time of a process.

Scheduling criteria:

Waiting time = Total waiting time - No. of time units process had executed - Arrival
time.

Issues:

The algorithm relies on the burst time of processes, but it is complicated to calculate.
One of the ways to calculate the next CPU burst time is to approximate.

The algorithm cannot be implemented on the short-term scheduling level only.

Priority Scheduling algorithm
Semantics: A priority is associated with each process and the short-term scheduler
selects the process with the highest priority. Equal priority tasks are scheduled by the
FCFS algorithm.

Priority scheduling algorithm can be preemptive and non preemptive (cooperative):

Operating systems (OSes) 91

Preemptive: The algorithm preempts the CPU from a task if a newly added in the
ready queue task has higher priority than the currently execution task.

Non preemptive: The algorithm puts the new process in the head of the ready queue,
but does not preempt a currently execution process.

Scheduling criteria:

…

Issues:

Indefinite blocking (starvation): A process that is ready to run but waiting for CPU can
be considered as blocked. The algorithm can leave low priority tasks blocked
indefinitely. The issues can be solve using the aging technique. Aging can be
represented as a special variable by which the task priority is corrected. The value
increases when a task is waiting for execution.

RR (Round Robbin) algorithm
This algorithm is primary designed for time sharing systems and it is similar to the FCFS
algorithm, but preemption added to switch between processes. A small unit of time, called
a time quantum or time slice is defined (generally from 10 up to 100 ms.).

Semantics: A newly created process gets a time slice assigned, and placed to the circular
ready queue. The low-term scheduler selects one process at a time in queue order. The
selected process is being executed only for its slice time, then the scheduler preempts the
CPU and the process is placed back to the circular queue, in case, it did not terminate.
The cycle continues round by round until the circular queue is empty.

Implementation details:

Data structure: Ready queue (FIFO).

A new process is added to the tail of the queue.

The sort-term scheduler picks the first (queue head) process from the queue, sets the
time interrupt after one time slice, and send signal to the dispatcher to switch
processes.

The CPU processor start execution:

[process has terminated]: if a process CPU burst time is less than the time slice
(quantum) the process terminates it executing and releases the CPU voluntary.

[process has not been terminated]: A non terminated process is placed back to the
ready queue. And the process state is save in the PCB.

the short-term scheduler selects the next process to execute and sends signal to the
dispatcher to make a context switch.

Scheduling criteria:

Operating systems (OSes) 92

Turnaround time = Completion time - arrival time.

Waiting time = Turnaround time - burst time. Or Waiting time = Last Start time - Arrival
time - (Preemption * Time Slice). Where Preemption is the number of time the process
was preempted before final execution.

Issues:

Complexity in finding the right time quantum (time slice). Otherwise, the RR algorithm
will work as the FCFS algorithm.

Multilevel queue algorithms
Semantics: Multilevel queue (MLQ) scheduling algorithm is a CPU scheduling technology
that divides the ready queue into several separate queues based on type or priority of the
processes (Tasks). Each queue can be managed with its own scheduling algorithm,
depending on the characteristics of the process it holds.

In multilevel queue system, processes (tasks) are permanently assigned to one queue
based on characteristics, such as process type (system, interactive, batch), priority or
memory requirements. One assigned to a queue, a process does not move between
queues.

The multilevel queue scheduler is responsible for both distributing tasks into the
appropriate queues based on their type and priority and managing the scheduling policy
across the queues (inter-queue scheduling), usually done by the preemptive priority
scheduling algorithm.

Intra-Queue scheduling: Once, the process in their respective queues, the intra-queue
scheduling is handled by the specific scheduling algorithm.

Implementation details:

Multiple queues are created for different processes, each queue managed by its
own scheduling algorithm. Each queue has different priority.

The OS (core scheduler) moves processes (task) into different queues, usually
based on the priority of each queue.

Multilevel feedback-queue algorithm
Preamble: Multilevel feedback-queue scheduling (MLFQ) is an advanced type of CPU
scheduling algorithms that build upon the multilevel queue (MLQ) scheduling concept.
However, unlike traditional MLQ, where processes (tasks) are permanently assigned to a
single queue, MLFQ allows processes (task) to move between different queues based on
their behavior and CUP usage patterns.

For example, if a process uses too much CPU time, it will be moved to lower priority
queue. in addition, a process that waits to too long in a low-priority queue can be moved to
a higher-priority queue. This form of aging prevents process (task) starvation.

Operating systems (OSes) 93

Semantics: Distribute new processes among different priority queues, each process can
be reassigned to a different queue based on specific process parameters. Each queue
follows its own scheduling algorithm.

Implementation details:

The number of queues: Each queue has a lever of priority.

The scheduling algorithm for each queue: each queue requires its own scheduling
algorithm.

The algorithm which is responsible for determining whether upgrade a process to a
higher or lower priority queue.

The algorithm that is responsible for determination of a queue to which a new process
must be assigned.

Process synchronization
Process synchronization
The orderly execution of cooperating processes that share logical address space. So data
consistency is maintained.

Critical section
Critical section is a code segments within a process where the process changes shared-
memory objects (i.e., common variables, updating a table, writing a file, etc.).

If a process is executing code in a critical section, no other processes is allowed to execute
code in their critical sections. (No process are executing in its critical section at the same
time).

Critical section problem
The critical section problem is to design a protocol that the processes can use to cooperate.

Implementation details:
Each process must request permission to enter its critical section.

The section of code implementing this request is the entry section.

The critical section may be followed by an exit section.

The remaining code is the remainder section.

Example:

do {

if Entry section

{

Operating systems (OSes) 94

critical section code

}

Exit section

{

exit section code

}

Remainter section

{

remainder code

} while (1);

Requirements for critical section problem solution
1. Mutual exclusion:

Definition: Only one process can be in its critical section at any time.

Example: If a process P. is executing in its critical section, then no other process can
be executing in their critical section.

2. Progress:

Definition: When no process is in its critical section, any processes waiting to enter
their critical section should be able to make progress in a finite amount of time.

Example: If Process A has completed its critical section and Process B and C want to
enter, the system should allow one of them to proceed based on some defined criteria
without waiting indefinitely.

3. Bounded waiting:

Definition: There should be a limit on the number of times other processes are
allowed to enter their critical sections after a process has requested to enter its own
critical section.

Example: If Process A requests access to the critical section, it should eventually be
able to enter, even if other processes frequently request access.

Solutions
Peterson’s Solution
A classical software-based solution to the critical-section problem. This solution may not
work correctly on modern computer architectures.

do {

// Entry critical section

flag[Pi] = True;

turn = Pj; // Global

// There is no code execution in the while loop

Operating systems (OSes) 95

// The while loop holds the futher execution of the program.

// As long as this condition is True it will never go to the

// critical section.

while (flag[Pj] && turn[Pj] == True);

// Critical section

// Exit critical section

flag[Pi] = False;

// Reminder code

} while (True)

do {

// Entry critical section

flag[Pj] = True;

turn = Pi; // Global

// There is no code execution in the while loop

// The while loop holds the futher execution of the program.

// As long as this condition is True it will never go to the

// critical section.

while (flag[Pi] && turn[Pi] == True);

// Critical section

// Exit critical section

flag[Pj] = False;

// Reminder code

} while (True)

Synchronization mechanisms for space-sharing systems
These are common solutions to the critical section problem.

Mutexes (Mutual Exclusion Locks)

Description

Test and Set Lock

bool TestAndSet(bool *target)

{

bool rv = *target;

*target = true;

Operating systems (OSes) 96

return rv;

};

do

{

while (TestAndSet(&lock)); // do nothing.

// Critical section;

// Exit section

lock = False;

// Remainder section;

} while (True)

Pros:

Satisfy the mutual exclusion.

Cons:

Bounded waiting is not satisfied.
Semaphores

Description
Semaphore proposed by Edgers Dijkstra, it is a technique to manage current processes by
using a simple integer value, which knows as a semaphore. Semaphore is a software
based solution.

Semaphores are non-negative

P(Semaphore S) {

 while (S <= 0); // no execution.

 S--;

}

S(Semaphore S) {

S++;

}

Note: All the modifications to the integer value of the semaphore in the wait() and
signal() operations must be executed invisibly. That is, when one process modifies the
semaphore value, no other processes can modify that same value.

Types of semaphores:

Operating systems (OSes) 97

Binary semaphore: The value of a binary semaphore can change only between 0 and 1.
On some systems binary semaphores are known as mutex locks, as they are that
provide mutual exclusion. If the value is 0 the shared resource is being used by
another process (requesting process has to wait). If the value is 1 the requesting
process is free to execute the critical section.

Counting semaphore: Its value can range over an unrestricted domain, It is used to
control access to a resource that have multiple instances.

Issues of semaphores:
Requires busy waiting:

Description: While one process is in its critical section, other processes have to loop
continuously in their entry section. Busy waiting wastes CPU cycles that some other
processes might be able to use productively. (Also called a spin lock).

Solution: Make processes block themselves instead of continuously executing in the
entry loop and wasting CPU time. The block operation places a process into a waiting
queue associated with the semaphore, and state of the process is switched to the
waiting state. Then the control is transferred to the CPU scheduler that selects which
process to execute next. Therefore, the CPU can be used by another processes.

Deadlocks and starvation (if self blocking operation is implemented):

Description: After implementing self blocking by moving waiting processes to a
waiting queue and transferring the control to the CPU scheduler, there are several
more issues may arise, such as deadlocks and process starvation.

Deadlock. If a process 0 executes (wait(S) and then wait(Q)) and at the same time the
process 1 execute (wait(Q) , and then wait(S)) the deadlock arises because the process
0 cannot execute the wait(Q) instruction as the Q semaphore is taken by the process 1,
meanwhile the process 1 cannot execute the instruction wait(S) as the process 0 took
the semaphore S. Therefore, two processes are unable to execute further instruction,
and they are locked forever.

Process 0 Process 1 Comment

wait(S) wait(Q) So far everything is fine.

wait(Q) wait(S)

Process 0 cannot get the Q semaphore, as long as it is
already taken by the process 1. And the process 1 cannot
take the semaphore S, as long as it is already taken by the
process 0.

… … Critical section instructions.

signal(S) signal(Q)
Supposed to increment semaphore, but this instruction will
never execute in both processes.

Operating systems (OSes) 98

Process 0 Process 1 Comment

signal(Q) signal(S) Supposed to increment semaphore, but this instruction will
never execute in both processes.

Monitors

Description
Monitors are a high-level synchronization construct used to control access to shared
resources and avoid conflicts in cooperative programming. Unlike low-level mechanisms
like semaphores and mutex, a monitors provide a structured way to handle mutual
exclusion and conditional synchronization within a single construct, making them easier to
use and less error-prone.

A monitor is essentially a class or module that encapsulates shared data and provides
controlled access to it. It consists of:

Shared Variables: The data that needs synchronized access.

Procedures/Methods: Functions within the monitor that operate on shared data.

Mutual Exclusion: Only one process (or thread) can execute any monitor procedure at
a time, ensuring safe access to shared data.

Condition Variables: Special variables used to implement conditional waiting within a
monitor. Condition variables allow processes to wait for a certain condition to be true
before proceeding.

In a monitor-based solution, only one thread can be active inside the monitor at any given
time, and condition variables handle waiting and signaling to ensure that threads only
proceed when it’s safe.

When a process enters a monitor, it gains exclusive access, and no other process can
enter until it leaves. This provides automatic mutual exclusion for all procedures in the
monitor.

Unlike mutex and semaphores, monitors use condition variables for conditional
synchronization. A condition variable allows a thread to wait for a specific condition to
become true.

wait(): A process calling wait() on a condition variable releases the monitor lock and
goes to sleep until another process signals the condition.

signal(): A process calling signal() on a condition variable wakes up one of the waiting
processes (if any), allowing it to proceed once the monitor is free.

Issues of monitors
Limited to High-Level Languages: Monitors are generally a feature of high-level
languages and are not available directly in low-level languages like C.

Operating systems (OSes) 99

Limited Control: While easier to use, monitors provide less fine-grained control over
synchronization compared to low-level mechanisms like semaphores or spinlocks.

Potential for Deadlock: Incorrect use of condition variables can lead to deadlocks if
processes are not signaled properly.

Barriers
Condition variables

Classic problems of synchronization
The bounded-buffer (producer-consumer) problem
Description:

The bounded-buffer problem, also known as the producer-consumer problem, is a classic
synchronization problem in operating systems. It illustrates the challenges of process
synchronization when multiple processes (or threads) share resources—in this case, a
bounded buffer with a limited capacity.

The problem involves two types of processes:

1. Producers: These processes generate data (or items) and place them into the shared
buffer in empty slots.

2. Consumers: These processes remove data (or items) from the buffer to process them.

The bounded-buffer problem aims to coordinate the actions of producers and consumers
so they can safely share the buffer without conflicts and without wasting time or
resources.

1. The producer must not insert data when the buffer is full.

2. The consumer must not try remove data when the buffer is empty.

3. The producer and consumer should not add or remove data simultaneously.

Requirements for solution:

1. Mutual exclusion: Only one process (either a producer or a consumer) can access the
buffer at the same time.

2. No starvation: Both producer and consumer should get a fair opportunity to access the
buffer without being indefinitely delayed.

3. Synchronization: Producer must wait if the buffer is full. Consumer must wait is the
buffer is empty.

Solution:

Initialization of semaphores: there are three semaphores are going to be used:

m (mutex) — a binary semaphore which is used to acquire and release lock.

Operating systems (OSes) 100

empty — a counting semaphore whose initial value is the number of empty slots in
the buffer. (Initially all slots in the buffer are empty).

full — a counting semaphore whose initial value is 0. Counts the number of full slots
in the buffer.

do

{

wait(Empty); // decrease empty

wait(Mutex); // acqure lock

/* Add data to the buffer */

signal(Mutex); // release lock

signal(Full); // increase full

} while (True);

do

{

wait(Full); // decrement full

wait(Mutext); // aquire lock

/* Read data from the buffer */

signal(Mutex); // release lock

signal(Empty); // increment empty

} while (True);

The readers and writers problem
Description:

The Readers-Writers problem is a classic synchronization issue in operating systems that
arises when multiple processes (or threads) need to access shared data, such as a
database or file. Some processes only need to read the data (readers), while others need
to write or update the data (writers). The goal of the Readers-Writers problem is to allow
concurrent read operations while ensuring that writes are done exclusively to avoid data
inconsistency.

Problem overview:

Readers: Processes that only read the shared data. Multiple readers should be allowed
to read concurrently without interference since reading doesn’t alter the data.

Writers: Processes that modify or update the shared data. Only one writer should be
allowed access to the data at any time to ensure data integrity.

Types of the readers-writers problem:

There are three main variations of the Reader-Writer problem, each prioritizing different
needs:

Operating systems (OSes) 101

1. First Readers-Writers problem (Reader Priority): This allows any reader to access the
shared data as long as there is no writer actively writing, which can cause writer
starvation if there’s a constant flow of readers.

2. Second Readers-Writers problem (Writer Priority): Once a writer requests access, no
new readers are allowed to start reading until the writer has completed. This can cause
reader starvation if writers are frequently requesting access.

3. Third Readers-Writers problem (Fair solution): Ensures fairness between readers and
writers by using queue-based scheduling or fair access mechanisms. Both readers
and writers get a chance to access the data in the order they arrive.

Solution using semaphores (reader priority):

Initialize semaphores:

1. mutex — a binary semaphore that initialized to 1, and used to ensure mutual exclusion
when the read count is updated. i.e. when any reader enters or exits from the critical
section.

2. wrt — a semaphore (initialized to 1) common to both reader and writer processes.

3. read_count — and integer variable (initialized to 0) that keeps the tack of how many
processes are currently reading the object.

do

{

/* Writer requests for crtical

section */

wait(wrt);

// Perform write;

// exit section

signal(wrt)

} while (True);

do

{

wait(mutex);

read_count++; // increase number of readers

if (reader_count == 1)

{

wait(wrt); // This ensures no writer can enter if there is ever 1 read

}

signal(mutex); // other readers can enter while this one is reading.

// Reading section (critical section for readers)

Operating systems (OSes) 102

// Code to read the shared data

wait(mutex);

read_count--;

if (reader_count == 0)

{

signal(wrt);

}

signal(mutex);

} while (True);

The dining philosophers problem
Description:

The Dining Philosophers Problem is a classic synchronization problem that demonstrates
the challenges of allocating shared resources among multiple processes in a way that
avoids deadlock and starvation. It models a situation where multiple processes
(philosophers) need to share limited resources (forks), which leads to potential conflicts.

The problem was formulated by Edsger Dijkstra and illustrates issues in concurrent
programming and process synchronization, especially in cases where processes need
exclusive access to resources that are shared.

Problem overview:

Processes (philosophers): a fixed number of processes. Has two states work on
shared resourced (eat), and do not work on shared resources (think).

Resources (forks): a fixed number of shared resources.

The problem arises when a process in order to work on shared resources is required two
resources simultaneously, hence the number of shared resources is less than the number
of processes that are able to utilize these resources at the same time.

Requirements for solution:

No Deadlock: The system should be designed so that philosophers don’t end up in a
state where each is waiting for a fork held by another, causing deadlock.

No Starvation: Every philosopher should eventually get a chance to eat, avoiding
indefinite waiting for resources.

Concurrency: Philosophers should be able to eat concurrently when possible (for
instance, if their neighbors are not eating).

Solution using semaphores:

Each (fork) is a shared data. The shared data access can be regulated using binary mutex.

Operating systems (OSes) 103

Initialize forks as semaphores (one for each fork)

forks = [Semaphore(1) for _ in range(5)]

def philosopher(i):

 while True:

 think() # Philosophers are thinking

 # Pick up forks with lower-numbered fork first

 if i % 2 == 0:

 forks[i].wait() # Pick up left fork

 forks[(i+1) % 5].wait() # Pick up right fork

 else:

 forks[(i+1) % 5].wait() # Pick up right fork

 forks[i].wait() # Pick up left fork

 eat() # Philosophers are eating

 # Release both forks

 forks[i].signal() # Put down left fork

 forks[(i+1) % 5].signal() # Put down right fork

Possible resolution of the deadlock problem:

Allow only a limited number of processes to work on the shared data. So if all
processes acquire locks simultaneously there will the last lock which will allow
processes to execute their critical sections in order.

Allow process to start its critical sections only if two shared data resources are
available simultaneously.

Asynchronous solution: allow odd processes to start to work on the a certain number
of shared resources (left forks), whereas an even processes are allowed to start to
work on the opposite number of shared resources (right forks).

💡 Credits:
1. https://www.geeksforgeeks.org/

2. https://www.tutorialspoint.com/operating_system

3. https://www.nesoacademy.org/

https://www.geeksforgeeks.org/
https://www.tutorialspoint.com/operating_system
https://www.nesoacademy.org/

